Reinforcement Learning for Channel Coding: Learned Bit-Flipping Decoding

Fabrizio Carpi1, Christian Häger2, Marco Martalò3, Riccardo Raheli3, and Henry D. Pfister4

1New York University, 2Chalmers University of Technology, 3University of Parma, 4Duke University,

57th Annual Allerton Conference on Communication, Control, and Computing
Allerton Park and Retreat Center, Monticello, IL – September 27th, 2019
Introduction

Background
- Channel Coding
- Reinforcement Learning

Case Study: Reinforcement Learning for Bit-Flipping Decoding
- Problem Formulation
- Code Automorphism

Results
- Error Rate Performance
- Convergence Improvements

Conclusion
Introduction

Background

Case Study: Reinforcement Learning for Bit-Flipping Decoding

Results

Conclusion
Introduction and Motivation

Decoding of error-correcting codes

Parameterized decoders (message-passing, syndrome-based)

Classification/Regression problem

Supervised learning
Introduction and Motivation

Decoding of error-correcting codes

Classification/Regression problem

Supervised learning

Parameterized decoders (message-passing, syndrome-based)

Decision-making problem

Reinforcement learning

or

medium.com

google.com

F. Carpi, C. Häger, M. Martalò, R. Raheli, H.D. Pfister

Reinforcement Learning for Channel Coding: Learned Bit-Flipping Decoding
1 Introduction

2 Background

3 Case Study: Reinforcement Learning for Bit-Flipping Decoding

4 Results

5 Conclusion
Linear Block Codes

- C is a linear block code (N, K) described by a $M \times N$ parity check matrix H
- Syndrome: $s = Hz$, where $z \in \mathbb{F}_2^N$ is the received word
- Any codeword $c \in C$ satisfies $Hc = 0$
Decoding Algorithms with Sequential Decision Processes

→ Bit-Flipping (BF) decoding\(^1\) ← case study of this paper

- Basic idea: flip a bit that maximizes number of correct parity checks (on BSC)
 - It can also be extended to AWGN channel (Weighed BF, WBF)

Decoding Algorithms with Sequential Decision Processes

- Bit-Flipping (BF) decoding\(^1\) ← case study of this paper
 - Basic idea: flip a bit that maximizes number of correct parity checks (on BSC)
 - It can also be extended to AWGN channel (Weighed BF, WBF)

- Residual Belief Propagation\(^2\)

- Anchor Decoding of Product/Staircase Codes\(^3\)

Markov Decision Process (MDP)

Agent
\[\pi : S \to A \]

Environment
- state \(s_t \in S \)
- action \(a_t \in A \)
- transition probability \(P(s_{t+1} \mid s_t, a_t) \)
- reward \(R(s_t, a_t, s_{t+1}) = r_t \)
Q-Learning

Observable states and rewards ⇒ Solve with RL ⇒ Q-Learning

Q-Learning

Observable states and rewards ⇒ Solve with RL ⇒ Q-Learning

Policy

\[Q : S \times A \rightarrow \mathbb{R} \]

\[\pi^* (s) = \arg \max_{a \in A} Q(s, a) \]

Q-Learning

Observable states and rewards ⇒ Solve with RL ⇒ Q-Learning

Policy

\[Q : \mathcal{S} \times \mathcal{A} \to \mathbb{R} \]

\[\pi^*(s) = \arg \max_{a \in \mathcal{A}} Q(s, a) \]

Update (for learning rate \(\alpha \) and discount factor \(\gamma \))

\[Q(s_t, a_t) \leftarrow (1 - \alpha) Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') \right] \]

Convergence\(^5\): if \(|r_t| < \infty \) and \(0 < \alpha, \gamma < 1 \), then \(Q(s, a) \xrightarrow{t \to \infty} Q^*(s, a) \)

1 Introduction

2 Background

3 Case Study: Reinforcement Learning for Bit-Flipping Decoding

4 Results

5 Conclusion
Bit-Flipping Interpreted as an MDP

Problem Formulation

Agent

Decoder

Environment

- **State** $s_t \in S = \{ s_t = s : s = Hz \ \forall z \in \mathbb{F}_2^N \}$
- **Action** $a_t \in A = \{1, \ldots, N\}$
- **Transition** $P(s_{t+1} | s_t, a_t) \in \{0, 1\}$
- **Reward** $R(s_t, a_t, s_{t+1}) = r_t$

Action a_t

flip the a_t-th bit

State s_t

Reward r_t

large r_t if codeword is found
Reward strategy

- Maximum likelihood decoding (λ_n is the log-likelihood ratio for the n-th bit)

$$\arg \max_{c \in C} \prod_{n=1}^{N} P_{Y_n|C_n}(y_n|c_n) = \cdots = \arg \max_{e: \mathbf{He}=s} \sum_{n=1}^{N} -e_n|\lambda_n|$$

- Considering the RL BF multi-stage process

$$\arg \max_{\tau, a_1, \ldots, a_\tau: \sum_{t=1}^{\tau} h_{a_t}=s} \sum_{t=1}^{\tau} -|\lambda_{a_t}|$$

→ We propose to interpret $-|\lambda_{a_t}|$ as a reward

$$R(s_t, a_t, s_{t+1}) = \begin{cases} -c|\lambda_{a_t}| + 1 & \text{if } s_{t+1} = 0 \\ -c|\lambda_{a_t}| & \text{otherwise} \end{cases}$$
Q function

- For short codes: Q-table containing $Q(s, a)$ may be feasible (size $|S| \cdot |A|$)

\rightarrow For large $S \times A$: use a neural network (NN) to approximate $Q(s, a) \approx Q(s, a; \theta)$
Exploration strategies

- Standard: ε-greedy exploration

\[
a = \begin{cases}
\text{unif. random over } A & \text{w.p. } \varepsilon \\
\text{arg max}_{a'} Q(s, a') & \text{w.p. } 1 - \varepsilon
\end{cases}
\]

- We propose: $(\varepsilon, \varepsilon_g)$-goal exploration — where $\text{supp}(\mathbf{e}) \triangleq \{ i \in [N] | e_i = 1 \}$

\[
a = \begin{cases}
\text{unif. random over } A & \text{w.p. } \varepsilon \\
\text{unif. random over } \text{supp}(\mathbf{e}) & \text{w.p. } \varepsilon_g \\
\text{arg max}_{a'} Q(s, a') & \text{w.p. } 1 - \varepsilon - \varepsilon_g
\end{cases}
\]
Decoding with Reliability-based Sorting

- Permutation automorphism group: \(\text{PAut}(C) \triangleq \{ \pi \in S_N \mid x^{\pi} \in C, \forall x \in C \} \)
- Sorting strategy (BCH): the first \(K \) bits are the most reliable
 - For RM, we move least reliable bits to positions \(\{0, 1, 2, 4, \ldots, 2^{m-1}\} \triangleq B \)
- Approximate Sort and Discard (s+d): sort the received bits + discard LLRs

\[\frac{1}{2} \log_2(1 + \frac{E_s}{N_0}) \]

\(E_s/N_0 \) (dB)

achievable rates (bits/channel use)

\(\text{sort+discard } N = 32 \)
\(\text{sort+discard } N = 64 \)

1 Introduction

2 Background

3 Case Study: Reinforcement Learning for Bit-Flipping Decoding

4 Results

5 Conclusion
Results

Error Rate Performance

\begin{align*}
\text{CER} & \quad \text{RM}(32, 16) \\
E_b / N_0 (\text{dB}) & \quad 4 \quad 6 \quad 8
\end{align*}

\begin{align*}
\text{CER} & \quad \text{RM}(128, 99) \\
E_b / N_0 (\text{dB}) & \quad 4 \quad 6 \quad 8
\end{align*}
Results

Error Rate Performance

|ハードデシジョン | OSD | ML | BF | LBF-NN | (s+d)LBF-NN
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eb/N0 (dB)</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>CER</td>
<td>10^0</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

RM(32, 16)

RM(128, 99)
Exploration Strategies and Convergence

RM(32, 16) on BSC @ $E_b / N_0 = 4$ dB

- ε-greedy: $\varepsilon = 0.9$

- $\varepsilon, \varepsilon_g$-goal: $\begin{cases} \varepsilon = 0.6 \\ \varepsilon_g = 0.3 \end{cases}$
Introduction

Background

Case Study: Reinforcement Learning for Bit-Flipping Decoding

Results

Conclusion
Conclusion

Decoding of error-correcting codes

Decision-making problem

Reinforcement learning

☑️ RL framework for BF decoding

→ BF is mapped to an MDP
 - The objective is ML decoding
 - Exploration can be biased towards “good” actions to speed-up convergence

→ Table Q-learning and NN-based provide performance–complexity trade-offs

Simulation code available Github: fabriziocarpi/RLdecoding
Thank you! Q&A?

Reinforcement Learning for Channel Coding: Learned Bit-Flipping Decoding

Fabrizio Carpi1, Christian Häger2, Marco Martalò3, Riccardo Raheli3, and Henry D. Pfister4

1New York University, 2Chalmers University of Technology, 3University of Parma, 4Duke University,