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ABSTRACT

LEARNED TASK-AWARE COMPRESSION METHODS IN

COMMUNICATION SYSTEMS

by

Fabrizio Carpi

Co-Advisors: Prof. Elza Erkip, Ph.D, and Prof. Siddharth Garg, Ph.D.

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Electrical Engineering)

September 2024

Traditionally, communication systems have been designed to optimize general

performance metrics like error rate and signal distortion, regardless of the specific

tasks performed over the networks. In contrast, semantic and task-aware communications

aim to co-design a communication strategy tailored to individual applications,

resulting in superior performance but also high specialization. In this thesis, we

explore two communication settings within general-purpose networks, where we

redefine the communication strategy by incorporating task-aware compression

algorithms instead of classic separate processing blocks.

First, we introduce a precoding-oriented channel state information (CSI) feedback

scheme for multi-cell multi-user MIMO systems. Our learned end-to-end architecture

integrates the downlink channel estimation phase, the CSI compression, and the
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downlink precoding computation. The proposed loss function maximizes the

users’ achievable rates while minimizing the CSI feedback overhead. Simulations

demonstrate superior performance compared to previous precoding-oriented methods,

and increased e�ciency compared to conventional methods that separate the CSI

compression blocks from the precoding processing.

Second, we consider the primitive relay channel, which consists of a source-

destination pair along with a relay, where we propose detection-oriented compress-

and-forward (CF) neural relays. By training neural CF relays with decoder-side

information, we maximize the end-to-end communication rate between the source

and the destination. Our learned compressor recovers binning of the quantized

indices at the relay, mimicking the optimal asymptotic CF strategy without requiring

prior knowledge imposed in the design. We show the advantages of exploiting the

correlated destination signal for relay compression through di↵erent neural CF

architectures. Our learned task-oriented compressors provide the first proof-of-

concept work toward interpretable and practical neural CF relaying schemes.
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Chapter 1

Introduction

In his seminal work [6], Shannon defined the problem of communication as

the accurate reproduction of a message at a remote location. In this spirit,

he intentionally separated the semantic aspect from the engineering problem,

representing information with a set of possible messages characterized by a probability

distribution. This led to the establishment of classical information theory, focusing

on task-agnostic measures like entropy and mutual information. Shannon and

Weaver [7] further refined this framework, identifying three levels in the analysis of

communication problems:

1. the technical problem (how accurately can symbols be transmitted?),

2. the semantic problem (how precisely do transmitted symbols convey meaning?),

3. the e↵ectiveness problem (how e↵ectively does the received meaning a↵ect

conduct?).

However, their primary focus remained on the technical aspect and in particular on

how to overcome noisy distortions in the communication channel. This emphasis
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on the technical aspects of communication led to the development of numerous

technologies optimized for metrics like data rate and error probability, often

overlooking the specific tasks and applications that the communication system was

planned to support.

Fast-forward several decades, and the advent of machine learning (ML) and

artificial intelligence (AI) is revolutionizing the field of communication systems.

Building upon Shannon’s foundational work on the technical problem, ML/AI

is now being integrated as an optimization tool to solve open problems using a

data-driven approach. Traditionally, communication systems relied on algorithms

and protocols designed for precise assumptions and channel models. However, the

integration of ML/AI has introduced a new paradigm, enabling communication

systems to learn, adapt, and optimize their performance in complex environments in

an end-to-end fashion [8]. This has led to significant advancements in areas such as

channel estimation and signal detection [9, 10], resource allocation, and interference

management [11, 12]. By identifying use cases where traditional algorithms fall

short, ML/AI is not only improving existing systems but also opening up new

possibilities for network optimization across a wide range of performance metrics.

Concurrently, going back to Shannon and Weaver [7], recent years have seen

growing interest in the second and third levels of problems, i.e., the semantic and

the e↵ectiveness problems. This paradigm shift, known as task-aware (or semantic)

communication design, recognizes that messages are not only sequences of bits,

but conveyors of diverse concepts with varying importance depending on the final

goal. In this context, a semantic/e↵ective transmitter prioritizes the transmission

of information relevant to the specific task at hand. As an example, consider an

image classification task (dog vs cat): instead of transmitting the whole sequence
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of pixels, a semantic/e↵ective transmitter would send relevant features such as the

shape of the ears, rather than irrelevant information like the image background.

ML/AI has played a pivotal role in enabling the recent explosion of task-aware

(semantic) communications, see [13, 14, 15, 16, 17, 18] for an introduction and

references therein. The ability to extract meaningful patterns from data has

facilitated the development of tailored algorithms that can adapt communication

strategies to specific tasks. From the wireless industry perspective, 6G is expected

to provide connectivity to emerging technologies such as autonomous robots

(including vehicles), digital twins, augmented/virtual reality, and personal assistants

(based on generative AI) running on the cloud. The diverse nature of these

use cases may necessitate highly specialized network architectures to deliver the

required performance levels, underscoring the importance of continued research and

development in task-aware communication design.

Boosted by the capabilities of ML/AI tools and inspired by recent advancements

in task-aware communications, this thesis shifts focus from emerging use cases to

identifying intrinsic tasks within existing networks. We build upon the task-aware

foundation and redefine processing blocks that are used in general-purpose networks.

Our strategy involves a systematic approach:

1. identifying specific tasks within the network;

2. defining key metrics and objectives for the optimization;

3. co-designing the communication strategy in conjunction with the identified

task.

This is particularly relevant as the demand for e�cient and adaptable communication

systems grows. By redefining traditional processing blocks in a task-aware fashion,
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we aim to improve overall performance and e�ciency, ensuring that general-purpose

networks can e↵ectively support the increasingly diverse demands of modern

applications.

In this thesis, we specifically focus on the task-aware compression perspective.

For a given application, our goal is to identify the appropriate metrics and design

variables to optimize the communication system for that particular task. Our focus

is on developing strategies that describe the source messages with the minimum

amount of overhead while maximizing the end-to-end performance metrics. To this

end, we investigate two task-aware communication problems.

• The channel state information (CSI) feedback problem. In this scenario, we

consider downlink beamforming as the ultimate task for the base station. We

adopt a joint processing solution that bypasses explicit CSI reconstruction,

allowing the base station to directly derive beamforming information from

the compressed CSI. This approach enables us to design a CSI compression

scheme that maximizes users’ achievable rates in an end-to-end fashion.

• The compress-and-forward (CF) problem in the primitive relay channel. In

this scenario, the goal is to detect the transmitted source symbols at the

destination, with the help of a relay node. The relay’s goal is to design a CF

strategy that maximizes the source-to-destination communication rate. In

this case, we exploit the distributed compression architecture and design a CF

strategy that exploits the correlated destination signal for the compression.

In both scenarios, we leverage the task-aware approach to design specialized

mechanisms that can be smoothly integrated into general-purpose networks. Specifically,

we use neural networks to model the relevant processing blocks of the communication
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system. We then define an end-to-end loss function that directly optimizes the task-

aware objective. This approach empowers the learned processing blocks to extract

and process task-relevant features e↵ectively. Finally, we provide an interpretation

of the obtained results to shed light on the inner workings of the ”black box”

view of neural networks, improving our understanding of the underlying learned

mechanisms.

1.1 Thesis Organization

The rest of this thesis is organized as follows. An overview of general tools for

task-aware compression is given in Chapter 2. The precoding-oriented CSI feedback

problem is discussed in Chapter 3. The detection-oriented relays are analyzed in

Chapter 4. Application-specific conclusions are drawn at the end of both Chapter 3

and Chapter 4, while more comprehensive takeaways messages are discussed in

Chapter 5.
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Chapter 2

Task-Aware Compression

The key ingredient of task-aware compression is to use compression methods

that can be co-designed with the task of interest. In particular, we seek to

minimize the communication overhead (or compression rate) while maximizing

some task-related utilities. While identifying the utilities is often straightforward,

as they are directly linked to performance metrics, managing the communication

overhead can be problematic. In many compression problems, the optimization

of the compressor becomes intractable when the quantization is performed in

high-dimensional spaces [19]. In this chapter, we first present a simple example

of task-aware compression design, focusing on optimizing the compression for

the hypothesis testing problem. This simplified setting illustrates how the task

utility and communication strategy can be co-designed. We then move to define

the important concept of transform coding [2], which allows to further expand

practical aspects of the task-aware communication co-design. Finally, we summarize

recent advances in neural compression, introducing tools that will be used in

subsequent chapters for the design of end-to-end task-aware compression methods
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for communication systems.

The rest of this chapter is organized as follows. Section 2.1 discusses the

compression for hypothesis testing example. Section 2.2 introduces the concept of

transform coding. Section 2.3 explains recent advancements in neural compression.

2.1 Example: Compression for Hypothesis Testing

This section analyzes a simple task-aware compression design. The focus is

on the analytical construction of compressors for the binary hypothesis testing

problem. The setup is similar to the one of distributed detection [21]. In this work,

we focus on the algorithmic analysis of the task-aware compressor.

We consider a binary hypothesis testing scenario where the resource-constrained

client (transmitter) performs fixed-length single-shot compression on data sampled

from one of two distributions; the server (receiver) performs a hypothesis test on

multiple received samples to determine the correct source distribution. To this end,

the task-aware compression problem is formulated as finding the optimal source

coder that maximizes the asymptotic error performance of the hypothesis test on

the server side under a rate constraint. A new source coding strategy based on

a greedy optimization procedure is proposed and it is shown that the proposed

compression scheme outperforms universal fixed-length single-shot coding scheme

for a range of rate constraints.
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H0 : X ⇠ P0

H1 : X ⇠ P1

X

One-Shot
Compressor

f(·)

Bu↵er
n

Hypot.
Test.
L(·)

Accept or
Reject H0

TX-Client RX-Server

X̂ X̂
n

Figure 2.1: System model: binary hypothesis testing.

2.1.1 Binary Hypothesis Testing under Single-Shot

Compression

Consider the system model of Fig. 2.1. The source data comes from one of the

two distributions P✓, ✓ 2 {0, 1}, where ✓ = 0 represents the null hypothesis H0 and

✓ = 1 represents the alternative hypothesis H1. We have X1, . . . , Xn ⇠ P✓ i.i.d.

random variables defined over a finite alphabet X = {1, . . . , |X |}. The transmitter,

due to memory constraints, cannot store and process Xn jointly to do hypothesis

testing. Instead, it sends the one-shot (scalar) compressed X
n to the receiver where

hypothesis testing takes place. Note that this setup is equivalent to the distributed

detection problem [21], where n transmitters send i.i.d. samples to a central unit

to perform the hypothesis testing (detection).

At the transmitter, the single-shot compressor f is a surjective function defined

as

f : X !M (2.1)

where M = {1, . . . ,M} is the compressed alphabet of size M . We denote X̂ = f(X),

Part of this work was presented at IEEE SPAWC 2021 [20].



9

i.e., X̂ represents the mapping of the source letter X. We consider M < |X |, since

for M � |X | there is no need for compression. This corresponds to fixed-rate

compression with rate R = logM .1

The probability distribution of X̂ under P✓, ✓ 2 {0, 1}, is denoted as P̂✓ and is

given by

P̂✓(x̂) =
X

x:f(x)=x̂

P✓(x). (2.2)

The receiver observes X̂1, . . . , X̂n and either accepts or rejects the null hypothesis.

Using standards definitions in simple hypothesis testing [22], type-I error, denoted

as ↵n, occurs when the null hypothesis (✓ = 0) is true, but the receiver rejects it.

Instead, type-II error, denoted as �n, corresponds to the receiver accepting the null

hypothesis when the alternative hypothesis (✓ = 1) is true. It is known that in the

classical hypothesis testing setting, for any ✏ 2 (0, 1/2) and ↵n < ✏, the optimal

type-II error �✏
n
decays exponentially in n with exponent � defined as

� = � lim
n!1

1

n
log �✏

n
. (2.3)

We say that (R, ⌘) is achievable if there exists a single-shot rate R compressor at

the client and a corresponding hypothesis testing function at the server with type-I

error less than ✏ and type-II error exponent ⌘. Note that type-II error exponent

does not typically depend on type-I error bound ✏ [22] as long as ✏ is fixed, hence we

will not explicitly state the dependency on ✏. In particular, for a given compression

rate R, we would like to find the largest achievable type-II error exponent

�
?(R) = sup{⌘ : (R, ⌘) achievable}. (2.4)

1
Throughout this thesis log(·) is assumed to be base 2.
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Note that if R = log(|X |) and the compressor is the identity transformation id(·),

then Cherno↵-Stein lemma [22] determines the optimal error exponent

�
?(log |X |) = �id(log |X |) = D(P0||P1), (2.5)

where D(P0||P1) is the Kullback–Leibler (KL) divergence between P0 and P1 [22].

The error exponent penalty for a rate R compressor f at is defined as

�f(R) = D(P0||P1)� �f(R), (2.6)

where �f(R) is the largest type-II error exponent determined by the compressor f.

The optimal penalty is

�?(R) = D(P0||P1)� �
?(R). (2.7)

Since the hypothesis testing is eventually performed on the compressed variable

X̂, we need to establish optimality of the log-likelihood ratio (LLR) test.

Lemma 1 (Hypothesis testing on compressed variables). The following LLR test

on compressed variables X̂i = f(Xi), i = 1, . . . , n, is optimal.

L(X̂1, . . . , X̂n) =
nX

i=1

log
P̂0(X̂i)

P̂1(X̂i)

✓̂=0
?
✓̂=1

log T, (2.8)

where T � 0 depends on the type-I error exponent bound ✏. The corresponding

optimal error exponent is

�f(R) = D(P̂0||P̂1). (2.9)

Proof sketch. Since the source random variable is i.i.d. and the compressor function
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is f memoryless, the compressed variable is also i.i.d. X̂1, . . . , X̂n ⇠ P̂✓. Then,

Neyman-Pearson test [22, Chapter 11] can be applied to X̂
n. Moreover, Cherno↵-

Stein lemma determines that the the optimal error exponent is equal to the KL

divergence between the distribution of the compressed variables under the two

hypotheses.

Note the error exponent �f(R) determines the speed of convergence — intuitively,

the farther apart the two compressed distributions (large KL divergence), the faster

the type-II error probability goes to zero. Hence, our goal is to find a compressor

f which induces a partition of M sets over X such that the KL distance between

the compressed distributions D(P̂0||P̂1) is maximized. Clearly, compression reduces

the error exponent (we will mathematically show this in Proposition 1) and by

Lemma 1 the smallest compression penalty for the compressor f is

�f(R) = D(P0||P1)�D(P̂0||P̂1). (2.10)

Then, the optimal compressor f? at rate R = logM is

f? = argmax
f

D(P̂0||P̂1) s.t. |f| M, (2.11)

or, equivalently,

f? = argmin
f

�f(R) s.t. |f| M. (2.12)

where |f| is the cardinality of the compression function.

In the following proposition, we derive a useful analytical expression for �f(R)

in terms of distributions over compressed symbols. For mathematical convenience,

we define Gx̂ = {x : f(x) = x̂}; this set includes the source outcomes mapped
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to the compressed symbol x̂. Hence, the compressor induces the “groups” Gx̂ 2

{G1, . . . ,GM} = G, which form a partition over X .

Proposition 1 (Compression penalty on type-II error exponent). For any compressor

f, the minimal compression penalty is �f(R) � 0 and can be expressed as:

�f(R) =
MX

x̂=1

P̂0(x̂)D
⇣
P0(x|x̂)

���
���P1(x|x̂)

⌘
(2.13)

where the posterior distribution of X given the compressed realization f(X) = x̂ is

P✓(x|x̂) =
P✓(x)

P̂✓(x̂)
{x̂ = f(x)}. (2.14)

Proof. Expanding equation (2.10):

�f(R) =

X

x2X
P0(x) log

P0(x)

P1(x)
�

X

x̂2M
P̂0(x̂) log

P̂0(x̂)

P̂1(x̂)

=

X

x̂2M

X

x2Gx̂

P0(x) log
P0(x)

P1(x)
�

X

x̂2M

0

@
X

x2Gx̂

P0(x)

1

A log
P̂0(x̂)

P̂1(x̂)
(2.15)

=

X

x̂2M

X

x2Gx̂

P0(x) log

 
P0(x)

P̂0(x̂)

P̂1(x̂)

P1(x)

!
(2.16)

=

X

x̂2M

X

x2Gx̂

P0(x) log
P0(x|x̂)

P1(x|x̂)
(2.17)

=

X

x̂2M
P̂0(x̂)D

⇣
P0(x|x̂)

���
���P1(x|x̂)

⌘

where: in (2.15) we used the definition (2.2); in (2.15) and (2.16) we used the fact

that G1, . . . ,GM form a partition over X ; in (2.17) we used the definition (2.14) since

P (X̂|X) = {X̂ = f(X)}. Note that if Gx̂ contains a single element (one-to-one

mapping), then D
�
P0(x|x̂)||P1(x|x̂)

�
= 0. Moreover, (2.15) is greater than zero by

the log-sum inequality.
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Algorithm 1: KL-greedy compressor’s construction
Input : Source distributions P0, P1; rate M .

1 Initialize: P̂0  P0, P̂1  P1, G  {{1}, . . . , {|X |}}.
2 for k = 1, . . . , |X |�M do
3 Find {Ga,Gb} ⇢Mk which minimize (2.18).
4 Remove the b-th entry and combine {Ga,Gb} by updating the a-th entry:

5 P̂0  [. . . , P̂0(Ga) + P̂0(Gb), . . . , 0, . . . ]

6 P̂1  [. . . , P̂1(Ga) + P̂1(Gb), . . . , 0, . . . ]
7 G  [. . . ,Ga [ Gb, . . . , ;, . . . ]
8 end

Output :Compressed distr. P̂0, P̂1; groups G.

Non-negativity of �f(R) � 0 can also be observed from equation (2.13) as it is a

convex combination of KL-distances, each individually positive. Proposition 1 also

yields an important intuition about optimal compression: note that the x̂-th term

in (2.13) is directly proportional to the relative entropy between the posteriors over

the x̂-th group Gx̂ induced by f. As a consequence, (2.13) suggests that a good task-

aware compression strategy combines the source letters that have similar posteriors

over the compressed groups; in other words, the probability ratios between the

combined letters under P0 have to be similar to the ones under P1.

2.1.2 Proposed Compressor for Hypothesis Testing

When solving the optimization problem in (2.11), one has to consider all the

possible surjective functions f which induce valid partitions over the source alphabet;

the number of such partitions is exponential in the source/compressed alphabet

size. Partitioning problems of this nature have been shown to be NP-Hard [23,

Chapter 3],[24]. Similar considerations were drawn in [21], where it was concluded

that an exhaustive search is needed.

Previous work [21] focused on the special case of one-bit quantization (M = 2),
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where a simple threshold rule provides the optimal compressor. On the other hand,

in this thesis, we propose an e�cient (i.e., polynomial time) greedy approximation

for the optimal compressor for any M .

The following lemma is the basis for our construction.

Lemma 2 (One-step Compression from |X | to |X |�1). Let f be a compression rule

that groups two letters {a, b} ⇢ X . That is, Gm = {a, b}, m 2M, and the others

groups Gi, i = 1, . . . ,M , i 6= m, are one-to-one. Then, the optimal compressor for

M = |X |� 1 induces the groups G
?, minimizing the compression penalty

G
? = argmin

Gm={a,b}⇢X

⇢
P̂0(m)D

⇣
P0(x|m)

���
���P1(x|m)

⌘�
, (2.18)

where the posteriors over the candidate group Gm = {a, b} are simply defined as

P✓(x|m) =


P✓(a)

P✓(a) + P✓(b)
,

P✓(b)

P✓(a) + P✓(b)

�
. (2.19)

Note that if the groups Gi are one-to-one, the i-th KL divergence term in (2.13)

is 0. Intuitively, when reducing the alphabet size by one, the optimal compressor

combines the two letters that minimize the product of the probability of the group

and the KL distance between the posteriors over the group.

For general M , we propose an iterative construction of the compressor that

reduces the compressed alphabet size by one in each step. Denote the steps by

k = 1, . . . , |X | � M , where M is the target rate. Let Mk be the compressed

alphabet at the k-th step, with size |Mk| = |X |� k, with k = 1, . . . , |X |�M . Let

G1, . . . ,G|Mk| be the corresponding partition on X at the k-th step. For example,

at the first step k = 1, the (optimal) groups G1, . . . ,G|X |�1 are computed according

to Lemma 2. Generally, at step k > 1, our compressor combines the two groups
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{Ga,Gb}
?

k
⇢Mk that minimize (2.18), where X is replaced by Mk and {Ga,Gb}

is a generalization of {a, b}. Finally, the compression function f is defined such

that f(x) = x̂ if x 2 Gx̂. We call our proposed compressor “KL-greedy” and its

construction is summarized in Algorithm 1. Note that the number of pairs of

groups {Ga,Gb} that need to be considered at the k-th step is
�|Mk|

2

�
. Thus, our

compressor can be designed in polynomial time.

2.1.3 Compressed Hypothesis Testing Results

In this section, we discuss numerical results and performance of Algorithm 1.

For illustration purposes, we consider P✓ to be a (shifted) binomial distribution

over X with parameter s✓, i.e.,

P✓(x) =

✓
|X |� 1

x� 1

◆
s
x�1
✓

(1� s✓)
|X |�x

. (2.20)

We quantify the compression penalty �f(R) based on (2.10). We also estimate

type-II error rate by performing the LLR test (2.8) on the receiver side; we consider

blocklength n = 5 and bound on the type-I error ✏ = 0.05. The threshold T

is empirically chosen such that it is the largest value for which the estimated

type-I error is N(✓̂ = 1, ✓ = 0)/N(✓ = 0) < ✏, for a given compressor f at

rate M ; N(·) is the counting function. The type-II error rate is empirically

estimated as N(✓̂ = 0, ✓ = 1)/N(✓ = 1). Both estimates are computed over

N(✓ = 0) = N(✓ = 1) = 106 realizations of source blocks xn.

As a baseline, we consider the universal fixed-length single-shot lossy compression

scheme analyzed in [1]. We recall that although this universal compressor is task-

unaware, it is designed for soft reconstruction under logarithmic loss distortion,
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which generally provides “universally good” schemes [25]. The construction of this

universal compressor aims to find a universal distribution over X which is used to

approximate the source distribution over the family {P0, P1}. Intuitively, the most

likely letters of the universal distribution get one-to-one mappings, while the least

likely ones get grouped together.

In the figures, we show empirical results for di↵erent compression functions f:

• Uncompressed: no compression is performed, i.e., x̂ = x;

• Optimal compressor: defined in (2.12);

• Our KL-greedy compressor: defined in Section 2.1.2 and Algorithm 1;

• Universal compressor: defined in [1].

In Fig. 2.2, 2.3 and 2.4 we consider a source alphabet of size |X | = 13; the

parameters of the two hypotheses are s0 = 0.4, s1 = 0.6. On the other hand,

in Fig. 2.5 and 2.6 we consider a larger source alphabet of size |X | = 256; the

parameters of the two hypotheses are s0 = 0.48, s1 = 0.52. We note that for this

larger source alphabet, it is no longer computationally feasible to determine the

optimal compressor.

Fig. 2.2 illustrates the resulting KL-greedy compressor, the universal compressor,

and the compressed distributions for M = 4. As previously explained, our KL-

greedy compressor seeks to maximize the KL distance between the posteriors over

the groups; we also point out that this induces a partition on X that divides the

source alphabet into regions where one of the hypotheses is more likely than the

other. This pattern is also visible in the compressed distributions since the two

hypotheses exhibit divergent distributions (large KL distance). On the other hand,
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Figure 2.2: Left: Source distributions for |X | = 13. Top-right: compressed
distributions for our compressor of Algorithm 1; the solid blue line shows the
mappings of the compression function. Bottom-right: compressed distributions for
the universal compressor from [1]; the dashed green line shows the mappings of the
compression function.

the universal compressor aims to make the two compressed distributions as uniform

as possible. As we discussed above, the larger the KL divergence between the

compressed distributions, the better for the hypothesis testing task.

Fig. 2.3 and 2.5 show the compression penalty as a function of the compression

rate M . The former also shows the performance of the optimal compressor, since it

can be computed in reasonable time for a small source alphabet; in this case, we can

see that our compressor performs close to the optimal. In both cases, our compressor

outperforms the universal compressor, and it quickly achieves zero penalty, i.e., the

KL distance of the compressed distributions is close to the uncompressed one as M

increases.

Fig. 2.4 and 2.6 show the empirical type-II error rate as a function of the
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Figure 2.3: Compression penalty for |X | = 13.
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Figure 2.4: Type-II error rates for |X | = 13.

compression rate M . The former also shows the performance of the optimal

compressor: our compressor performance overlaps with the optimal compressor.

For both the small and the large alphabet scenarios, our compressor outperforms the

universal compressor, and it quickly achieves an error rate close to the uncompressed

setting as M increases.

2.2 Transform Coding

Shifting our focus, we now introduce the broader concept of transform coding,

a widely adopted technique in signal processing, including applications in image,

audio, and video compression. The fundamental idea behind transform coding is
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Figure 2.5: Compression penalty for |X | = 256.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10�1

100

Uncompressed

logM

Type-II error rate, |X | = 256, n = 5, ✏ = 0.05

Our compressor

Universal compressor

Figure 2.6: Type-II error rates for |X | = 256.

to transform the original data space into an easier (i.e., sparser, structured) code

space, which is then quantized and used as the interface for the communication

channel [2]. In fact, this transformation aims to exploit the inherent structure and

correlations within the source data, e↵ectively concentrating the original signal into

a smaller number of coe�cients. This concentration consequently enables more

e�cient quantization and encoding, leading to significant compression gains. Again,

in transform coding is also important to define utility metrics that will be optimized

through the transform. For example, the rate-distortion tradeo↵ is considered in

reconstruction problems, where the rate represents the number of bits spent to

represent the compressed signal, and the distortion measures the quality of the

final reconstruction.
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Figure 2.7: Transform coding framework adapted from [2, 3]. Circles denote
variables, while squares denote functions. The upper branch represents the
transmitter, while the lower branch is the receiver. A source random variable s is
mapped into the code space through a transformation t = F(s). The transformed
variable t is then quantized into a discrete variable q = Q(t), which is compressed at a
rate R and sent through the communication channel. The receiver reconstructs t̂ and
transforms it back to the data space d = G(t̂). The source and destination variables
(s, d) are used to compute the utility function U . The end-to-end optimization
minimizes L = R� �U .

A pictorial block diagram for transform coding is shown in Fig. 2.7, where

the upper branch represents the source (or transmitter), while the lower branch

represents the destination (or receiver). A source random variable s is mapped

into the code space through a transformation t = F(s). The transformed variable

t is then quantized into a discrete variable q = Q(t), through the quantization

function Q. Note that in general, the quantization is a lossy operation. The discrete

variable q is then compressed at a rate R and sent through the communication

channel, where R is the number of bits required for the data transmission. For

example, entropy coding allows to compress q in a lossless fashion at a rate close to

its entropy R ⇡ H(Pq). The receiver reconstructs t̂, and transforms it back to the

data space d = G(t̂) through the inverse transform G. The source and destination

variables (s, d) are used to compute the utility function U . The goal of the system
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designer is to minimize the rate-utility tradeo↵

L = R� �U, (2.21)

where the coe�cient � is used to weigh the importance of the utility in the

optimization.

In the next example (adapted from [26]), we provide a simple connection

between the abovementioned transform coding setup (Fig. 2.7) and the channel

state information (CSI) problem. A more comprehensive CSI use case is also

presented in Chapter 3.

Example 1. Consider the CSI feedback problem: s and d are channel values in the

frequency-space (antenna) domain; the transforms F and G are Fourier and inverse

Fourier transform, respectively. Hence, the code space represents channel value in

the angular-delay domain – which is a sparser representation in most use cases. The

discrete variable q is a quantized version of t: the rate R depends on the probability

mass function of the variable q. When interested in channel reconstruction (i.e.,

d = ŝ), the (negative) mean-squared error (MSE) can be used as the utility function.

The optimization tradeo↵ in this case is L = R + � ·MSE(s, d).

Note that standard transform coding implies strict modularity, which means

that the processing blocks (transform, quantization, entropy coding) operate

independently. Linear transformations have been a popular choice to convert the

original data into the code space since they usually provide simple implementations.

Fourier and discrete cosine transforms have been at the basis for several image,

audio, and video compression standards since they are designed to concentrate

the energy of the signal into low-frequency coe�cients. This property is crucial
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for e�cient compression, as it allows for coarsely quantizing the high-frequency

coe�cients with minimal impact on the quality. For example, the JPEG [27] image

compression algorithm relies on discrete-cosine transform followed by quantization.

Then, lossless entropy coding is used to e�ciently transmit/store the quantized

representations.

2.3 Neural Compression

Recent advantages in signal processing showed that nonlinear transform coding

(NTC) outperforms linear transformation in a wide range of applications [28]. In the

NTC case, the transformation functions (F,G) are nonlinear functions. Since it is

known that neural networks provide “universal” function approximators [29], recent

NTC-based compressors model the transformations as neural networks (F✓,G�),

where ✓ and � represent the neural network parameters. When trained with real-

world data in an end-to-end fashion, neural network allow for great expressivity

and flexibility in the transform function definitions.

When focusing on the end-to-end optimization of communication systems with

machine learning methods, a di↵erentiable formulation must be provided for all

the building blocks of the transmitter-receiver chain. When the goal is to minimize

the rate-utility tradeo↵ L = R� �U , one has to provide di↵erentiable methods to

compute the gradients of L with respect to the model parameters. The optimization

of the utility function U is a well-established concept in machine learning literature.

The main idea is to identify a performance metric and train the system to optimize

such a metric (or a proxy for it). For instance, MSE is commonly used for

both training and testing in reconstruction (regression) problems. However, in
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Figure 2.8: Rate optimization block diagram, during testing (top) and training
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classification problems, the non-di↵erentiable nature of the error rate leads to the

use of cross-entropy as a proxy for maximizing accuracy.

On the other hand, the optimization of the communication overhead R was

introduced in [3, 30] for a popular class of neural compressors for images. Following

the diagram in Fig. 2.8, we here summarize the main processing blocks that are

used during testing and training.

During testing: the continuous variable t is quantized to the closest integer. The

resulting discrete variable is denoted by t. The entropy coding block converts t

into a bitstream; the probability distribution of t, denoted by P (t), is assumed to

be estimated (with high fidelity) from training. Let H[P (t)] be the entropy of the

discrete random variable t; then, the entropy coder will produce a bitstream with

rate R ⇡ H[P (t)] bits/channel use.

During training: the quantization and entropy coding blocks cannot be used

since they are not di↵erentiable operations. Instead, these blocks are replaced by

i.i.d. uniform noise, which simulates quantization noise introduced by rounding

to the closest integer [3, 30]. The pseudo-quantized variable is t̃ = t + z, where

z ⇠ U [�0.5, 0.5] is the quantization noise. The distribution of t̃, denoted by P (t̃),

is learned during training, where the parameters are indicated by  . Note that
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P (t̃) is a continuous relaxation of P (t) [3].

Finally, given the parameterized distribution P (t̃), the rate component can be

expressed as

R = �E[log2 P (t̃)] (2.22)

and it represents the number of bits transmitted for each channel use.

The method outlined above (or variations of it) is one of our building blocks for

the learned task-aware compression settings analyzed in the next chapters.
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Chapter 3

Precoding-Oriented CSI Feedback

In frequency division duplexing systems, downlink massive multiple-input

multiple-output (MIMO) precoding algorithms rely on accurate channel state

information (CSI) feedback from users. This thesis investigates the tradeo↵ between

the CSI feedback overhead and the resulting user performance in terms of achievable

rate. The goal is to determine the beamforming information (precoding) directly

from the user feedback. We employ a deep learning-based approach to design

an end-to-end precoding-oriented feedback architecture, including learned pilots,

user compressors for finite-rate feedback, and base station processing to determine

precoding vectors. We propose a novel loss function that maximizes the sum

of achievable rates while minimizing the CSI feedback overhead. We consider

both single- and multi-cell multi-user MIMO systems, analyzing the impact of

intra- and inter-cell interference on the CSI feedback strategy design. Simulation

results demonstrate that our approach outperforms previous precoding-oriented

methods and o↵ers greater e�ciency than conventional methods that separate CSI

Part of this work was presented at IEEE ICC 2023 [31].
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compression and precoding.

3.1 Introduction

Massive multiple-input multiple-output (MIMO) is a fundamental technology

of 5G and of future wireless systems, and accurate channel state information (CSI)

is a key enabler to unlock its full potential [32, 33]. As we move towards 6G, with

larger antenna arrays and wider bandwidths, e↵ective CSI becomes even more

critical for achieving the desired performance. When operating in time division

duplexing, the base station (BS) leverages channel reciprocity to obtain CSI from

uplink transmissions. However, this reciprocity does not hold in frequency division

duplexing (FDD), requiring users to estimate the downlink channel realizations

and feed back (on the uplink) the estimated downlink CSI to the BS, incurring a

communication overhead. This feedback burden becomes increasingly taxing as the

system dimensions increase (e.g., more antennas, more users, more subcarriers),

impacting the scalability of FDD systems.

The CSI feedback challenges become even more prohibitive when considering

multi-cell systems, where the users experience inter-cell interference in addition to

the intra-cell one. Multi-cell MIMO cooperation, in its simplest form, enables the

BSs to share the CSI for interference coordination [34]. The CSI is shared across

BSs through backhaul links allowing BSs to coordinate their signaling strategies

(e.g., beamforming, scheduling) for interference avoidance. This basic level of

coordination requires a relatively small amount of backhaul communication (only

the CSI) since information-carrying signals are not shared. For instance, each

BS has to know the CSI for the desired users (served in the same cell), and the
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interfering users that are served by BSs in neighboring cells. In this case, each user

may transmit both the desired and interfering CSI feedback to the serving BS, then

the BS will forward (through the backhaul link) the appropriate interfering CSI

information to the adjacent BSs [34].

The CSI feedback compression problem has been widely investigated in the

past. Traditionally, the primary focus has been on the channel reconstruction

problem, aiming to reproduce the user’s estimated downlink channel at the base

station, which the BS then uses to do multi-user precoding [35, 36]. Classical CSI

compression techniques make use of signal processing techniques such as vector

quantization [37] and compressed sensing [38]. In the first case, the overhead is still

impractical for large systems, while the latter technique assumes channel sparsity

in some domains.

Depending on the type of MIMO processing adopted in the system, three

fundamental metrics can be considered for the CSI feedback problem: (i) overhead,

that is the number of bits sent on the feedback link; (ii) performance, that is the total

achievable rate at the users; (ii) distortion, that is the loss (e.g., mean squared error)

incurred when trying to reconstruct the channel realizations at the BS. For reference,

classical methods have been focused on the channel reconstruction problem, i.e.,

the focus is on optimizing the overhead-distortion (or rate-distortion) tradeo↵. The

reconstructed channels are then used to design the downlink signals. In broadcast

(downlink) MIMO channels, determining the best precoding method for optimal

performance requires complex, non-linear calculations that become increasingly

di�cult as the network size grows [39, 40, 41]. Generally speaking, it is known that

the optimal downlink rate is achieved with nonlinear precoding methods [36, 42]

based on dirty paper coding [43]. In this thesis, instead, we assume that transmit
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beamforming is implemented with linear precoding as it is a popular choice due to

its simple implementation [35]. Shifting toward a task-oriented approach, we are

interested in directly optimizing the overhead-performance tradeo↵ when designing

the compression algorithm.

Recently, deep learning-based solutions have been proposed for the CSI feedback

problem in massive MIMO FDD systems, see [44] and references therein for an

overview. Concurrently, the 3rd Generation Partnership Project (3GPP) identified

the CSI feedback framework as one of the first use cases for the integration between

machine learning and artificial intelligence in wireless networks [45]. In general,

these data-driven solutions rely on fewer assumptions and outperform classical CSI

feedback methods. The capability of the autoencoder structure [46] for the CSI

compression problem was first shown by [26]. Several follow-up works focused on

channel reconstruction have improved the distortion metric [44] with increasing

dimensionality reduction on the feedback link. Similarly to image processing

applications [3, 30], a mechanism for the feedback overhead optimization has been

introduced in [47]. The authors [47] consider the rate-distortion objective, where

the goal is to reconstruct channel realizations with minimal overhead at the BS side.

Their results [47] show that the feedback overhead can be further reduced with

respect to previous work, but there is no focus on the final task that is performed

at the BS (e.g., beamforming).

On the other hand, [4, 48, 49, 50] consider objectives related to the final task

to be performed at the BS, i.e., beamforming with linear precoding. A single-user

system is analyzed in [48], where precoding information is computed and compressed

at the user side, and decoded at the base station: the proposed solution shows

overhead savings compared with 3GPP standards methods. Instead, [4, 49, 50]
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proposed a beamforming-oriented architecture that includes the downlink channel

estimation phase (done with pilots), the uplink feedback compression, and the

computation of the downlink precoding. The end-to-end optimization results in

learned pilots, learned UE processing to extract beamforming-oriented features

from the received pilots, and learned BS processing to determine the downlink

beamforming from the compressed CSI. In [4], a single-cell multi-user narrowband

system is considered, where the system output is the collection of linear precoders

and the objective function is the sum of achievable rates experienced by the users.

Their best results [4, Fig. 9] are obtained by modeling each feedback tap as a binary

value, using a smooth approximation during training to allow backpropagation.

Hence, the feedback overhead is determined by the choice of the feedback dimension

(fixed), without the possibility to obtain further compression. In [50] instead,

a single-user MIMO with orthogonal frequency division multiplexing (OFDM)

modulation and hybrid analog-digital beamforming architecture is considered.

Their feedback compression relies on the vector quantized variational autoencoder

(VQ-VAE) [51], where the loss function aims to construct an optimized codebook of

fixed size. In our previous work [49], we focused on a single-cell multi-user system,

while in this thesis we extend the framework to a multi-cell multi-user system.

Extending the CSI feedback problem to multi-cell systems, previous work [52]

considered the optimization of the soft-hando↵ model, where a single user per

cell gets interference from one neighboring cell only. In that case, there is no

intra-cell interference, but only inter-cell interference. Moreover, the authors in [52]

do not consider the channel estimation phase and do not explicitly optimize the CSI

feedback overhead, since they consider a pre-defined feedback size with post-training

uniform quantization, without specifically taking the overhead into account in their
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loss function. Another problem that arises in multi-cell systems is how to split

the CSI overhead between the desired and the interfering channel. A feedback-bit

allocation strategy for the quantized CSI feedback under the soft-hando↵ model was

proposed in [53], leveraging random vector quantization (RVQ) for CSI compression.

The authors [53] focus on maximizing sum-rate in Rayleigh fading channels using

quantized CSI, employing a high SINR approximation.

In this thesis, we analyze the tradeo↵ between the CSI feedback overhead and

the resulting sum of achievable user rates in a system employing linear precoding

on the downlink. Our task-oriented approach focuses on the BS determining

precoding vectors for each user to maximize the sum of achievable rates. We

extend our previous work [49] to include multi-cell multi-user systems, which are

a↵ected by both intra-cell and intra-cell interference. We assume that the BSs

in this multi-cell system cooperate for interference coordination [34], by sharing

CSI information that helps design proper precoding vectors for the users. Our

proposed loss function includes the optimization of the overhead required for the

CSI (number of feedback bits), by leveraging recent neural compression methods

from the image processing literature [3, 30]. In our end-to-end architecture, similar

to [4], the users observe a sequence of noisy pilots as input, and produce precoding-

oriented feedback messages for the BS. The BS processes the received feedback

and determines the precoder vectors for each user. The pilots, feedback schemes,

and BS processing are modeled with neural networks. Di↵erently from [4], we

include a feedback overhead optimization mechanism that estimates the feedback

distribution during training and uses entropy coding to generate the bit streams

at test time [3, 30]. The entropy of the feedback values is used to estimate the

feedback overhead (feedback rate). For the multi-cell scenario, we do not impose a
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structure on the splitting between desired and interfering channels, but we let the

optimization determine the final CSI overhead allocations. In order to train the end-

to-end architecture with gradient descent, we propose a tunable loss function that

captures the tradeo↵ between feedback overhead and system performance. Note

that by designing an appropriate loss function to optimize the overhead-performance

tradeo↵, this approach can be applied to any neural network architecture, the choice

of which is typically dictated by the nature of the input data. We show that the

precoding-oriented system trained using the overhead-performance loss function

outperforms conventional methods based on channel reconstruction followed by

traditional precoding techniques. In our precoding-oriented approach, the user

network is able to learn how to e�ciently transfer precoding-oriented quantized

information over the feedback link. We also address several robustness questions

for practical deployments: (i) we analyze the scalability of our system with the

number of users and cells, and propose learning strategies to facilitate the training

orchestration of dense networks; (ii) we investigate the robustness of the learned

solution with respect to the deployment scenario, focusing on asymmetric scenarios

where users experience di↵erent channel conditions.

We illustrate the system model in Section 3.2, while the precoding-oriented

CSI feedback approach is discussed in Section 3.3. Numerical results are shown in

Section 3.4, while conclusions are drawn in Section 3.5.

3.2 System Model

We consider a multi-cell multi-user massive MIMO system where multiple BSs

serve multiple users geographically distributed over di↵erent cells. Although our
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system for the soft-hando↵ model, where users are assumed to be at the cell edge.
This illustration focuses on the (m � 1)-th and the m-th cell. The black solid
arrows denote the desired channels h, while the orange dashed arrows denote the
interfering channels g.

approach applies to general multi-cell multi-user systems, for notation convenience

we present a modified soft-hando↵ model [40], a variant of the linear Wyner

model [54]. The system consists of M cells arranged circularly, with each cell

indexed by m 2 {1, . . . ,M} and containing one BS equipped with Nt transmit

antennas. Each cell serves K single-antenna users, for a total of M ·K users across

the multi-cell system. We assume that users within a cell experience inter-cell

interference only from the BS located immediately to their right, as illustrated in

Figure 3.1 for two adjacent cells. This is a typical assumption for the soft-hando↵

model [40], since hando↵ situations are a common occurrence in real-life cellular

systems. In other words, the users in the m-th cell su↵er interference from the

(m+ 1)-th BS; the users in the M -th cell su↵er interference from the 1-st BS.

In our system, we adopt multi-cell cooperation specifically for interference

coordination, as detailed in [34]. This approach requires the BSs to share downlink

CSI for both desired and interfering links. This CSI is acquired through user
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feedback on the uplink channel. Note that this level of coordination necessitates

backhaul links between the BSs to allow for the CSI exchange. It is important to

remark that, in this interference coordination mode, only CSI is shared between

BSs – not the actual user data.

We assume that linear precoding is used at each BS, hence the downlink

transmitted signal for the m-th BS is

xm =
KX

k=1

vm,ksm,k = Vmsm (3.1)

where vm,k 2 CNt is the precoding vector and sm,k 2 C is the symbol to be sent

for the k-th user in the m-th cell. Each precoding matrix Vm 2 CNt⇥K satisfies

the power constraint Tr(VmVH

m
)  P , and the symbols sm 2 CK are normalized to

E[smsHm] = I, for m = 1, . . . ,M .

We assume that the desired and interfering signal powers received by the k-th

user in the m-th cell are determined by the user’s location within the cell. The

transmitted signals experience both small-scale and large-scale fading, including

distance-dependent path loss and shadowing e↵ects. After averaging over small-

scale fading, the resulting desired and interfering signal powers are denoted by �m,k

and ⌘m,k, respectively. Hence, the received signal at the k-th user in the m-th cell is

ym,k =
p
�m,k h

H

m,k
vm,ksm,k +

p
�m,k

X

j 6=k

hH

m,k
vm,jsm,j

+
p
⌘m,k

X

i

gH

m+1,kvm+1,ism+1,i + zm,k (3.2)

where hm,k 2 CNt is the vector of downlink channel gains from the desired BS,

namely BS m, for the k-th user in the m-th cell; gm+1,k 2 CNt is the interfering
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channel gain from the adjacent cell for the k-th user in the m-th cell; zm,k ⇠

CN (0, �2
m,k

) is the additive white Gaussian noise. Let ⌘m,k = ↵m,k �m,k, with

↵m,k 2 [0, 1], and ⇢m,k = �m,k/�
2
m,k

. In other words, ↵m,k represents the ratio

between the power of the desired signal and the interfering signal from adjacent

cells, for the k-th user in them-th cell. On the other hand, ⇢m,k represents the signal-

to-noise ratio (SNR) of the received signal and it is independent of beamforming

vectors. We assume that ⇢m,k is known at the BS; in 3GPP context, it is analogous

to the channel quality indicator (CQI) [55]. Note that a single interfering signal

is reported in (3.2) since the soft-hando↵ model is considered. In the case of the

general multi-cell multi-user system, multiple interfering terms scaled by channel

gains gt,k, t 6= m+ 1, may be added to (3.2).

Given the received signal model in (3.2), the signal-to-interference-and-noise-

ratio (SINR) for the k-th user in the m-th cell is defined as

SINRm,k =
|hH

m,k
vm,k|

2

INTRAm,k + INTERm,k + 1/⇢2
m,k

,

where

INTRAm,k =
X

j 6=k

|hH

m,k
vm,j|

2
,

INTERm,k = ↵m,k

X

i

|gH

m+1,kvm+1,i|
2
. (3.3)

Note that INTRAm,k represents the intra-cell interference, while INTERm,k quantifies

the inter-cell interference, experienced by the k-th user in the m-th cell.

The achievable rate for the k-th user in the m-th cell is

Rm,k = log2 (1 + SINRm,k) . (3.4)
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Considering the multi-cell multi-user communication problem with M cells, each

with K users, the system performance is characterized by the network sum rate,

namely the sum of all the achievable rates, i.e.,

R =
MX

m=1

KX

k=1

Rm,k. (3.5)

The precoding matrices Vm, m = 1, . . . ,M , are jointly optimized at the network

level, thus accurate CSI is essential for designing theVm’s that maximize the network

sum rate in (3.5). Ideally, each BS should beamform its signals to the desired

users while simultaneously minimizing the interference towards users in neighboring

cells. We assume that neither the BSs nor the users have prior knowledge of the

channel realizations. Therefore, each of the m = 1, . . . ,M BSs must determine its

corresponding downlink precoding matrix Vm based only on the feedback received

from the users on the uplink. Note that knowledge of both h and g is needed to

maximize the SINR in (3.3). Consequently, we assume that each BS sends reference

signals (pilots) during the downlink channel estimation phase. We assume that

orthogonal scheduling is adopted to coordinate the downlink channel estimation

phase, e.g., time scheduling, so that each user is able to distinguish between signals

from di↵erent base stations. The pilots for the m-th BS, of length L, are denoted

by X̃m 2 CNt⇥L. The received noisy pilots at the k-th user in m-th cell are

ỹD
m,k

=
p
�m,k h

H

m,k
X̃m + zD

m,k
, (3.6)

ỹI
m,k

=
p
⌘m,k g

H

m+1,kX̃m+1 + zI
m,k

, (3.7)

where zm,k ⇠ CN (0, �2I) is the additive white Gaussian noise at the k-th user

in the m-th cell; ỹD
m,k

denotes the received signal when pilots from the serving
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BS are transmitted, while ỹI
m,k

denote the received signal when pilots from the

interfering (adjacent) BS are transmitted. The `-th pilot transmission satisfies the

instantaneous power constraint kx̃m,`k
2
2  P , where x̃m,` is the `-th column of X̃m.

In general, the CSI feedback overhead is proportional to the dimensions of the

system (e.g., number of users, antennas), and becomes very large in case of massive

MIMO systems with many users. Hence, users are required to extract relevant

CSI from the received pilots, then feed back the compressed CSI, or other relevant

information needed for the downlink precoding, to the BS over a rate-limited link.

The feedback for the user k-th in the m-th cell is as follows:

bD
m,k

= F
D
m,k

(ỹD
m,k

), (3.8)

bI
m,k

= F
I
m,k

(ỹI
m,k

), (3.9)

where F
D
m,k

and F
I
m,k

are the feedback schemes (compressors) used for the desired

and interfering CSI, respectively; bD
m,k

is the feedback for the desired BS, and bI
m,k

is the feedback for the interfering BS.

Following the multi-cell MIMO cooperation for interference mitigation approach,

we assume that each BS forwards the interfering CSI to the adjacent BSs through

backhaul links, as depicted in Fig. 3.2.

Therefore, the m-th BS collects the desired feedback from the K users in

the m-th cell, denoted by (bD
m,1, . . . ,b

D
m,K

), and receives the interfering feedback

(bI
m�1,1, . . . ,b

I
m�1,K) from the K users in the (m� 1)-th cell through the backhaul.

Hence, each of the m = 1, . . . ,M BS computes the precoding matrices as

Vm = Gm

⇥
(bD

m,1, . . . ,b
D
m,K

), (bI
m�1,1, . . . ,b

I
m�1,K)

⇤
, (3.10)
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Figure 3.2: Representation of the uplink feedback for the multi-cell multi-user
soft-hando↵ model, focusing on the (m � 1)-th and the m-th cell. Both desired
CSI bD and the interfering CSI bI are sent on the uplink to the serving cell. The
interfering CSI bI (in orange) is forwarded to the adjacent cell through the backhaul
link (in blue).

where Gm denotes the BS processing. Note that in our setup only Vm is provided

at the output of each BS, as the ultimate task of maximizing sum rate in (3.5) only

depends on Vm. Potentially, each BS could also provide channel reconstructions

for h and g that could be used for traditional precoding techniques.

Our focus in this thesis is to design a precoding-oriented CSI feedback strategy,

where the tradeo↵ between the feedback overhead and the network sum rate is

considered. Our system seeks to maximize the sum of achievable rates (3.5), while

the amount of bits required to transmit (bD
m,1, . . . ,b

D
m,K

) and (bI
m,1, . . . ,b

I
m,K

) over

the feedback link is bounded. We use neural networks to design the pilots X̃m, the

feedback schemes FD and F
I, and the BS processing G.
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3.3 Precoding-oriented CSI Feedback with Overhead-

performance Tradeo↵

As explained in the previous section, we define three stages for the precoding-

oriented CSI feedback strategy.

1. Downlink channel estimation phase, where the desired and interfering pilots

are received at each user according to (3.6) and (3.7), respectively.

2. Uplink CSI feedback phase, where the desired and interfering CSI information

is computed by each user and sent according to (3.8) and (3.9), respectively.

3. Downlink precoding phase, where each BS computes the precoding vectors

according to (3.10).

We use neural networks in place of conventional methods for the pilots {X̃1, . . . , X̃M},

the feedback schemes {FD
,F

I
}, and the BS schemes G. We also adopt a mechanism,

proposed in [3, 30], that optimizes the compression and quantization of the

feedback. We propose a precoding-oriented loss function, where the overhead-

performance tradeo↵ is directly embedded in the objective function. In this way,

the feedback scheme {F
D
m,k

,F
I
m,k

} can e↵ectively extract an e�cient precoding-

oriented representation of the channel realizations, and the BS processing G is able

to directly output the precoding matrices Vm’s. When it is clear from the context,

we may omit the superscripts D and I that indicate the desired and interfering CSI

processing blocks, respectively. More details about each of the processing blocks

are provided in the next sections.

An illustration of the block diagram is reported in Fig. 3.3. The blocks in green

denote the UE side, while the blocks in red denote the BS side. More details about
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and the DNN G�.

each processing block are provided in the remainder of this section.

3.3.1 Downlink Pilots

The downlink received pilots for the k-th user in the m-th cell are expressed

in (3.6) and (3.7). As in [4], we model each pilot X̃m as the output of a fully

connected neural network (single layer) with linear activation and zero bias. The

power constraint P is guaranteed during training by setting kx̃m,`k
2
2 = P , ` =
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1, . . . , L, where x̃m,` represents the `-th column of X̃m, and L is the pilot duration.

Gaussian noise is added to the sequence of L received pilots at the users to model

the receiver noise according to (3.6) and (3.7).

3.3.2 Feedback Scheme

As depicted in Fig. 3.3, the feedback schemes for the desired and interfering

CSI for each user are denoted by F
D
m,k

and F
I
m,k

, respectively. Generally speaking,

F
D
m,k

and F
I
m,k

can be di↵erent schemes for all the M ·K users, since each terminal

observes di↵erent channel realizations hm,k, gm,k. Both feedback schemes FD
m,k

and

F
I
m,k

are composed of three components: (i) a neural network F✓m,k
, where ✓m,k

is either ✓D
m,k

or ✓I
m,k

; (ii) a quantizer Q; (iii) an entropy coder c m,k
, where  m,k

is either  D
m,k

or  I
m,k

. More details about (ii)-(iii) are also provided in the next

sections.

The neural network F✓m,k
, where ✓m,k represents the set of trainable parameters,

is used to extract features from the received pilots ỹm,k. More precisely, the neural

network output for the desired and interfering CSI is

tD
m,k

= F✓Dm,k
(ỹD

m,k
), (3.11)

tI
m,k

= F✓Im,k
(ỹI

m,k
), (3.12)

where tm,k 2 RNb , and Nb is the dimension of the neural netowrk output. More

details about the neural network architecture are provided in Section 3.4.

The quantizer Q performs uniform scalar quantization to the closest integer.

The quantized vector for the k-th user in the m-th cell is denoted as tm,k = Q(tm,k).

During training, the quantization is replaced by adding independent identically



41

distributed (iid) uniform noise um,k, where the width of the uniform distribution

is equal to the quantization bin width, i.e., u1
m,k

, . . . , u
Nb
m,k
⇠ U [�0.5,+0.5] [3]. We

denote the pseudo-quantized vector as t̃m,k = tm,k + um,k and it substitutes tm,k

during training to allow gradient backpropagation.

Specifically, the pseudo-quantized features for the desired and interfering CSI

are

t̃D
m,k

= tD
m,k

+ uD
m,k

, (3.13)

t̃I
m,k

= tI
m,k

+ uI
m,k

. (3.14)

The quantized features, instead, are

t
D
m,k

= Q(̃tD
m,k

), (3.15)

t
I
m,k

= Q(̃tI
m,k

). (3.16)

The entropy coder c m,k
converts the quantized vector tm,k into bit streams in

a lossless fashion, thanks to the set of trainable parameters  m,k that models the

distribution of t [3]. The parameters for the desired and interfering CSI feedback

are denoted by  D
m,k

and  
I
m,k

, respectively. As in [30], t̃m,k is modeled using a

parametric, fully factorized density function. Each element of t̃m,k is modeled as a

zero-mean Gaussian distribution with standard deviation learned during training.

These learned parameters are then used by c to encode tm,k at test time. Finally,
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the bitstreams for the desired and interfering CSI are denoted as

bD
m,k

= c D
m,k

(t
D
m,k

), (3.17)

bI
m,k

= c I
m,k

(t
I
m,k

). (3.18)

3.3.3 Feedback Overhead Optimization

Similarly to previous works in the CSI feedback domain [47], we consider the

feedback rate as part of our optimization objective. Since both the quantizer

and the entropy coder are not di↵erentiable functions, they are substituted by

iid uniform noise during training [3], as described above. The i.i.d. noise um,k

simulates the quantization noise. The compression performed by the entropy coder

is lossless and at a rate close to the entropy of tm,k; so, at the BS side we have

c�1
 m,k

(bm,k) = tm,k. In fact, during training, the entropy of t̃m,k is estimated in

terms of the model parameters  m,k. Note that the probability density of t̃m,k

is a continuous relaxation of the probability mass function of tm,k [3], hence the

di↵erential entropy of t̃m,k approximates the entropy of tm,k; the estimated entropy

represents the average bit rate at the quantizer output and will be used in our loss

function to measure the feedback overhead [3]. During testing, the noise um,k is not

injected, but the output of F✓ goes through the quantizer Q and entropy coder c .

Note that our approach is di↵erent from [4] and [52]. In [4], the DNN output

tm,k contains binary values, and the dimension of tm,k determines the feedback

overhead. In [52], the output of the encoder network contains real values between

-1 and 1 (after tanh activation), and it is quantized with uniform quantization

of an arbitrary number of bits. However, we argue that further compression of

this feedback is possible and can provide significant gains. The authors in [4] also
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propose an alternative method where tm,k contains real values that are quantized

(using Lloyd’s algorithm [56]) according to a given overhead budget, and only the

BS DNN is further fine-tuned on the quantized inputs. On the other hand, in

our work, the optimization method [30] described above seeks to minimize the

feedback entropy (rate) without explicit dependency on the feedback dimensionality.

Moreover, our approach allows for end-to-end joint training between pilots, users,

and BS processing, including the feedback overhead optimization.

3.3.4 BS Processing

During test time, the entropy decoder at the BS losslessly reconstructs both

the received desired and interfering feedback

t
D
m,k

= c�1
 
D
m,k

(bD
m,k

), (3.19)

t
I
m�1,k = c�1

 
I
m,k

(bI
m�1,k), (3.20)

where bI
m�1,k is the interfering CSI feedback received through the backhaul link.

The output of the BS consists the precoding matrix Vm for the m-th cell

Vm = G�m

h
(t

D
m,1, . . . , t̃

D
m,K

), (t
I
m�1,1, . . . , t̃

I
m�1,K)

i
, (3.21)

where G�m represents the m-th BS neural network with parameters �m. The output

of each BS has to satisfy the power constraint by setting Tr(VmVH

m
) = P .

During training, in order to have an equivalent system with di↵erentiable

quantities, the entropy encoder-decoder pair is skipped, and the pseudo-quantized



44

features are directly provided to the BS network, i.e.,

Vm = G�m

⇥
(̃tD

m,1, . . . , t̃
D
m,K

), (̃tI
m�1,1, . . . , t̃

I
m�1,K)

⇤
. (3.22)

Note that during training, the full end-to-end optimization is equivalent to

having a central processing unit, having access to all the CSI from all users in all

cells, that seeks the precoding vectors that optimize the network rate (3.5). Instead,

during testing the BS output (3.22) only depends on the CSI inputs from the same

and neighboring cells, as in (3.10).

3.3.5 Loss Function

As discussed in Section 3.1, three metrics can be considered in the CSI feedback

problem: feedback overhead, system performance, and channel distortion. In

order to train the end-to-end system with deep learning techniques, we need a

di↵erentiable loss function that emulates the required properties for the system

described in Section 3.2 and depicted in Fig. 3.3. We consider a loss function (to

be minimized during training) that combines the three metrics as

L(⇥, ,�) = O � �R+ ⌫D, (3.23)

where O represents the feedback overhead, R represents the system performance

(achievable rate), and D represents the distortion loss (channel reconstruction);

� and ⌫ determine the tradeo↵ between the three components; ⇥ = {✓
D
, ✓

I
},

 = { 
D
, 

I
} and � are the learnable parameters. We assume that the tradeo↵

coe�cients are non-negative, i.e., �, ⌫ � 0. For example, traditional overhead-
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distortion (or rate-distortion) settings correspond to � = 0, while precoding-oriented

systems correspond to ⌫ = 0. In our work, we will consider ⌫ = 0 and will sweep

values of � for di↵erent feedback overhead. Systems that provide both precoding

vectors and channel reconstructions can be also considered by having non-zero

values for both (�, ⌫), but they are not the focus of this thesis. More details about

the metrics are provided below.

3.3.5.1 Overhead

The feedback overhead accounts for the amount of bits that are required to

transmit (bD
m,k

,bI
m,k

) on the uplink. As discussed previously, we use the empirical

entropy of t̃D
m,k

and t̃I
m,k

as a measure for the feedback overhead [30]. Hence, we

can express the overhead metric for the k-th user in the m-th cell as

Om,k(⇥, ) = Eh,g,u,z

⇥
� log2 pt̃(̃t

D
m,k

; D)

� log2 pt̃(̃t
I
m,k

; I)
⇤
, (3.24)

where pt̃(·; ) represents the approximated density of t̃ parameterized by  . This

loss term can be seen as an estimate for the number of bits required to represent

the feedback vectors (bD
m,k

,bI
m,k

). The sum of the feedback overhead for the K

users in the M cells can be expressed as

O(⇥, ) =
MX

m=1

KX

k=1

Om,k(⇥, ). (3.25)
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3.3.5.2 Performance

The system performance can be evaluated in terms of the achievable rate

experienced by the users, as explained in Section 3.2. According to (3.4) and (3.5),

we define the performance metric as

R(⇥, ,�) =
MX

m=1

KX

k=1

Rm,k(⇥, ,�), (3.26)

where

Rm,k(⇥, ,�) = Eh,g,u,z [log2 (1 + SINRm,k)] , (3.27)

where SINRm,k is defined in (3.3), and the precoding vectors Vm,k’s are computed

by the BS processing as in (3.10).

3.3.5.3 Distortion

Conventional methods (not precoding-oriented) rely on channel reconstructions

to compute the precoding vectors with traditional algorithms. In these conventional

methods, the CSI feedback is treated as a classic rate-distortion problem with � = 0

and ⌫ > 0 in (3.23), and the mean squared error (MSE) is adopted as a distortion

metric. We refer to this as a reconstruction-oriented CSI feedback, and the output

of the BS processing are the estimates of the channel coe�cients. Although this is

not the focus of this thesis, in this case, the distortion component can be expressed

as

D(⇥, ,�) = Eh,g,u,z

h
||hm,k � ĥm,k||

2 + ||gm,k � ĝm,k||
2
i
, (3.28)
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where ĥm,k and ĝm,k are channel reconstructions at the BS output when the CSI

feedback is reconstruction-oriented.

3.3.6 Feedback Overhead Partitioning

E↵ective multi-cell precoding strategies require CSI for both the desired and

interfering channels. Assuming that a fixed total overhead is available for the

CSI feedback, the partitioning policy between desired and interfering CSI bits can

improve the overall system performance. An analytical solution for the feedback

partitioning in Rayleigh fading channels was proposed in [53]. In our work, since

we adopt an end-to-end learned approach, we do not impose a structure on the

feedback partitioning scheme. In fact, the overhead component (3.24) of our loss

function (3.23) simply presents the sum of the overhead caused by the desired and

interfering feedback. In case a specific partitioning policy is to be implemented, a

scaling coe�cient can be introduced for the two terms in (3.24) in order to give

di↵erent importance to the desired and interfering feedback during training.

3.4 Results

We present simulation results for our precoding-oriented CSI feedback framework

in three di↵erent scenarios: (i) single-cell multi-user; (ii) multi-cell single-user;

(iii) multi-cell multi-user. Note that (i) exhibits intra-cell interference only, (ii)

exhibits inter-cell interference only, and (ii) exhibits both intra- and inter-cell

interference. These separate scenarios will allow us to better understand the

overhead-performance tradeo↵s and robustness in the following analysis. The

system performance is evaluated as the sum achievable rate (3.26), while the
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feedback overhead (per user) is estimated according to (3.24).

First, we describe the simulation scenario and the channel data generation and

define the neural network choices, the corresponding hyperparameters, and the

training procedure. Then, simulation results for the three abovementioned scenarios

are presented in separate subsections.

3.4.1 Simulation Scenario

While our framework is applicable to any channel model, we consider the

following multipath channel model for our simulations, similar to [4]. We assume

that each BS is equipped with a uniform linear array, with transmit array response

at(�) =
h
1, ej

2⇡fd
c sin(�)

, . . . , e
j
2⇡fd

c (Nt�1) sin(�)
i
, (3.29)

where � denotes the angle of departure (AoD), d denotes the antenna spacing, f

denotes the carrier frequency and c denotes the speed of light. The desired channel

gains at the k-th user in the m-th cell are the summation of Lp propagation paths

as

hm,k =
1q
LD
p

L
D
pX

`=1

↵
D
m,k,`

at(�
D
m,k,`

), (3.30)

where ↵m,k,` is the complex gain of the `-th path between the m-th BS and the

k-th user. Without loss of generality, we assume that the interfering channel gains

are characterized by a similar model

gm,k =
1q
LI
p

L
I
pX

`=1

↵
I
m,k,`

at(�
I
m,k,`

). (3.31)
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We assume that each BS is equipped with Nt = 64 antennas, with spacing

d = c/(2f), and pilot duration L = 8. For the channel models (3.30) and (3.31),

we assume that the number of paths is LD
p
= L

I
p
= 2. The channel gains are i.i.d.

↵
D
m,k,`

,↵
I
m,k,`

⇠ CN (0, 1). The desired AoD are i.i.d. �D
m,k,`

⇠ Uniform[�60o, 60o]

and the interfering AoD is i.i.d. �
I
m,k,`

⇠ Uniform[0o, 120o]. The users’ SNR is

⇢m,k = �m,kP/�m,k, where the downlink power constraint is P = 1, and we assume

� = 1 without loss of generality. The feedback link is noiseless, i.e., (bD
m,k

,bI
m,k

) is

received at the BSs without distortion.

3.4.2 Neural Network Definitions and Training Procedure

As observed in [4, 47], using unique feedback schemes works well also in the

multi-user scenario if the channel realizations have the same statistics according to

the channel model. Unless otherwise specified, we assume symmetry in the channel

conditions experienced by the users, so that we can consider a special case where

the processing blocks are the same, i.e., Fm,k = F and Gm = G, 8m, k.

The neural networks and hyperparameters are chosen as follows. The pilots

X̃m 2 CNt,L are defined as learnable complex coe�cients that satisfy the power

constraint ||x̃m,`||
2 = P . The user networks F✓D and F✓I consists of four fully-

connected layers with hidden size (5 ·Nb) and output size Nb = 20, while the BS

network G� has five fully-connected layers with hidden size (10 ·K ·Nt) and output

size (K ·Nt). Each hidden layer is preceded by batch normalization, and followed

by a rectified linear unit (ReLU) activation. Real and imaginary parts of signals are

processed on separate layers when appropriate. The last layers of both F✓ and G�

have linear activation, For the feedback mechanism similar to [30],  parameterize

the probability distribution of the feedback variable. We use the entropy bottleneck
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class from [57], which provides a PyTorch implementation of [58]. The end-to-end

architecture is trained with ADAM optimizer, learning rate 10�3, over at least

106 batches of size 1024. Unless otherwise specified, the parameters are initialized

randomly. The numerical results are obtained on a test set containing at least 104

channel realizations for each user.

Training multi-cell multi-user systems can quickly become computationally

challenging. For a large number of users, we suggest the following strategy to speed

up the training procedure. First, the user networks are learned for a single-cell

single-user system. Then, these pre-trained networks (FD
,F

I) can be used as an

initialization or as fixed parameters (not further optimized) for the user networks.

When the pre-trained user networks are used for initialization, we observed a

faster convergence to good performance results. On the other hand, when these

pre-trained networks (FD
,F

I) are fixed for each of the users in the cell, we can focus

on fine-tuning only the parameters on the BS side (i.e., pilots X̃ and precoding

processing G). This is equivalent to a scenario where the mobile vendors have

a fixed set of parameters (possibly more than one depending on location, CSI

overhead target, etc.), and the BS stores di↵erent networks for handling di↵erent

numbers of users and di↵erent scenarios.

3.4.3 Single-Cell Multi-User Scenario

We now discuss simulation results for the single-cell setting, where only the intra-

cell interference component degrades the SINR (3.3). Since we are considering a

single-cell scenario, the cell index m and the superscripts D/I are omitted for brevity

in this set of results. As reference precoding algorithms for the single-cell scenario,

we also consider reconstruction-oriented systems that rely on traditional precoding
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schemes such as maximal-ratio transmission (MRT) and zero-forcing (ZF) [35, 59].

In MRT, the per-user received power is maximized, while ZF attempts to minimize

the inter-user interference. Note that in the high (low) SNR asymptotic regime,

the optimal linear precoding strategy converges to the ZF (MRT) solution [35]. In

the perfect CSI at the transmitter (CSIT) scenario, each BS has perfect knowledge

of all channel coe�cients H, where H = [h1, . . . ,hK ] is the matrix collecting the

channel values for all of the K users in the cell. However, when a traditional

reconstruction-oriented CSI feedback method is adopted, the BS has access to an

estimate of the channel coe�cients Ĥ; this is referred to as the imperfect CSIT

scenario. The precoding matrices for MRT and ZF precoding are

VMRT = ⌧MRTA
H (3.32)

VZF = ⌧ZFA
H(AAH)�1 (3.33)

where ⌧MRT and ⌧ZF are determined to ensure that the power constraints Tr(VMRTVH

MRT) 

P and Tr(VZFVH

ZF)  P are satisfied; A corresponds to the true H in case of CSIT,

or Ĥ in case of imperfect CSIT.

Conventional methods rely on CSIT, by separating the source coding blocks

(compressor and decompressor) from the task block (compute precoding). Note

that previous works [26, 44, 47] showed that deep learning-based approaches

outperform traditional techniques (e.g., compressed sensing) for the CSI feedback

reconstruction problem. In particular, [47] showed that a deep learning-based

CSI feedback architecture can be successfully trained to optimize the overhead-

distortion tradeo↵, when using a feedback optimization similar to the one described

in Section 3.3.3; so we will consider the following deep learning-based approach as
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a surrogate for all conventional methods. To simulate this reconstruction-oriented

approach, we set � = 0 and ⌫ > 0 in our loss function (3.23), and consider Ĥ as the

output of the BS. Then, MRT and ZF precoders are computed using the channel

estimates Ĥ according to (3.32) and (3.33). The resulting precoding matrices are

used to estimate the performance according to (3.26). We train the model for

di↵erent values of ⌫ to obtain neural networks with di↵erent overhead-distortion

tradeo↵s. For example, large (small) ⌫ corresponds to a good (poor) reconstruction

with a little (big) feedback overhead.

As another baseline algorithm, we also consider the best results in [4, Fig. 4 and 9],

where the feedback is modeled as a vector of binary values. Each feedback overhead

budget determines the dimension of the feedback in the architecture and the end-

to-end system is trained to maximize the sum rate (3.26). Note that in this case

the feedback overhead is not optimized explicitly during training.

Finally, we present the results of our precoding-oriented approach, which

optimizes the overhead-performance tradeo↵ by training the end-to-end system with

� > 0 and ⌫ = 0 in the loss function (3.23). We recall that in this case the output of

the BS are the precoding vectors for each user in the cell, and channel values are not

explicitly reconstructed at the BS side. We obtain di↵erent overhead-performance

tradeo↵ values by changing the value of �: large (small) � leads to good (poor)

precoding performance with a small (large) feedback overhead. For this set of

results, we assume that all the users have the same SNR ⇢ = 10 dB.

Fig. 3.4 shows the overhead-performance tradeo↵ for the above-mentioned

methods in the simulation scenario described in Section 3.4.1. In addition, in order

to compare with the previous literature, we consider AoD �k,l ⇠ Unif.[�30o, 30o].

The SNR for all the users is set to ⇢ = 10 dB. Our precoding-oriented system
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Figure 3.4: Analysis of the tradeo↵ between the feedback overhead and the system
performance for a single-cell scenario (M = 1), with K = 2 users in the cell. Each
marker corresponds to a di↵erent end-to-end architecture trained for di↵erent values
of � and ⌫ in the loss function (3.23). In this case the angles are � ⇠ Unif.[�30o, 30o]
in order to compare with [4].

trained on the overhead-performance tradeo↵ is shown in green, and it outperforms

all the other methods. In the large feedback overhead regime, the reconstruction-

oriented system (similar to [47]) followed by ZF provides results comparable to

our approach, making the two methodologies equivalent when considering the

overhead-performance tradeo↵. Our methods also provide a significant gain in

performance compared to [4] (black line). This gain may be explained by the

adaptability of our end-to-end solution, which includes a learning mechanism paired
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with entropy coding that directly accounts for the feedback overhead in the loss

function, as explained in Section 3.3. Note that with our method the user’s neural

network is able to adapt to the overhead budget; i.e., the user is able to learn the

e�cient precoding-oriented feedback scheme. Compared with [4], our method is

able to provide further compression using entropy coding. However, this requires

an accurate representation of the distribution of the compressed variables, which

our framework provides, as illustrated in Section 3.3. As expected, in the large

feedback overhead regime, reconstruction followed by MRT/ZF approaches the

performance of the perfect CSIT case. In fact, as the overhead increases, the BS is

able to reconstruct the channel with decreasing distortion; hence, the traditional

precoding algorithms can rely on more reliable channel estimates.

Fig. 3.5 shows the system performance as the number of users K increases in the

single-cell system. To provide a comparison with [4], we consider channels with AoD

� ⇠ Unif[�60o, 60o], and feedback overhead per user of at most 30 bits/channel use.

The SNR for all users is ⇢ = 10 dB. As previously noted, increasing the number of

users K also increases the neural network size at the BS. With increasing K, the

training becomes more challenging since more computation blocks are optimized

jointly. In order to speed up training times, as explained in Section 3.4.2, we

also provide results for a system where the: (a) the users are pre-trained from a

single-cell single-user scenario, working at the target overhead of 30 bits/channel

use; (b) with fixed pre-trained users, the BS is fine-tuned and trained to maximize

sum-rate performance. As expected, since the users observe channel data from

the same distribution, the performance of the systems trained for a specific K and

K = 1 are equivalent. It can also be seen that our architecture optimized for the

overhead-performance tradeo↵ (3.23) outperforms the previous work [4] that fixed
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the feedback size and used a loss function based on the sum rate (3.5) only.

3.4.4 Multi-Cell Single-User Scenario

In this section, we present results for a multi-cell single-user scenario. We

consider a system composed of M = 10 cells, each with K = 1 users (for a total of

10 users). In this case, the system exhibits inter-cell interference only. Note that

although the system dimensions are similar to [52], in our setup we also include the

downlink pilot training phase, and consider a di↵erent channel model. The system

is evaluated in terms of the tradeo↵ between the sum rate performance (3.5) and

the overhead required for the feedback of each user.

As reference baseline algorithms, we consider: (i) the perfect CSIT scenario,

where the BSs have full access to both the desired channel gains h and the interfering

channel gains g; (ii) the uncompressed feedback scenario, where the users are by-

passed, and the received pilots are directly fed to the BSs over a feedback link

with infinite capacity (i.e., O !1 in (3.23)). Note that the perfect CSIT scenario

bypasses both the downlink channel estimation phase (done with the pilots) and

the CSI compression component, while the uncompressed feedback scenario skips

only the latter.

Fig. 3.6 shows results for the multi-cell single-user scenario with M = 2 and

K = 1, for di↵erent intra-cell interference ratios ↵ 2 {0, 0.1, 1}. The solid lines

represent the full end-to-end systems including pilots, user processing, and BS

processing, where each marker denotes a di↵erent value of � in (3.23). The

annotations near each marker represent the resulting overhead split between desired
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Figure 3.6: Analysis of the tradeo↵ between feedback overhead and system
performance for the multi-cell single-user setting. The system includes M = 2 base
stations, K = 1 users per cell (total of 2 users), and di↵erent interference ratios
↵. Each marker corresponds to an end-to-end architecture trained for a particular
value of � in (3.23). The text annotations near each marker represent the overhead
split between desired and interfering CSI.

and interfering CSI, i.e.,

split =
desired CSI bits

interfering CSI bits
.

As expected, as ↵ decreases, the system performance increases. Note that for

↵ = 0 (no interference), the performance is twice the single-cell single-user case

(see Fig. 3.5 for K = 1) since this corresponds to M = 2 independent singe-user

cells. Moreover, the split required to describe the desired channel is higher for lower

interference ↵. We can also observe that in the low overhead regime (left region of

the plot), the whole CSI overhead is dedicated to describing the desired channel;

as the overhead increases (right region of the plot), the users allocate increasing
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Figure 3.7: Analysis of the tradeo↵ between feedback overhead and system
performance for the multi-cell single-user setting. The system includes M = 10
base stations, K = 1 users per cell (total of 10 users), and di↵erent interference
ratios ↵. Each marker corresponds to an end-to-end architecture trained for a
particular value of � in (3.23). The text annotations near each marker represent
the overhead split between desired and interfering CSI.

fractions of overhead to the interfering CSI.

To demonstrate the ability to handle larger networks, Fig. 3.7 shows results for

the multi-cell single-user scenario with M = 10 and K = 1, for di↵erent inter-cell

interference ratios ↵ 2 {0, 0.1, 1}. We can see trends similar to the previous M = 2,

K = 1 case. Note that for ↵ = 0, the performance is ten times the single-cell single-

user case (see Fig. 3.5 for K = 1) since this corresponds to M = 10 independent

singe-user cells in this case.

We can note that our performance tends to saturate to the uncompressed

feedback regime for feedback overheads larger than Nt, where, as expected, higher



59

BS1: X̃1

. . .

�
UE1,1

�
UE1,2

h1,1

h1,2

BS2: X̃2

. . .

�
UE2,1

�
UE2,2

h2,1

h2,2

g1,1

g1,2 g2,1

g2,2

Figure 3.8: Downlink representation for the multi-cell multi-user simulation scenario
with M = 2 base stations, K = 2 users per cell (total of 4 users). The solid black
lines denote the desired channels hm,k, while the dashed orange lines denote the
interfering channels gm,k. Each base station has its own set of pilots X̃m.

interference ↵ requires more overhead. This indicates that excellent performance

could be achieved with approximately 1 bit per antenna per channel use. In previous

work [52] (which did not include the downlink pilots for channel estimation),

performance saturates at a slower rate as the overhead increases [52, Cfr. Fig. 7,

8, 9], suggesting a less e�cient precoding-oriented CSI feedback scheme.

3.4.5 Multi-Cell Multi-User Scenario

We now consider a fully multi-cell multi-user MIMO system with M = 2 BSs

and K = 2 users per cell, for a total of 4 users in the system. A diagram of the

considered scenario is shown in Fig. 3.8 (downlink), and in Fig. 3.9 (uplink). Note
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Figure 3.9: Uplink representation for the multi-cell multi-user simulation scenario
with M = 2 base stations, K = 2 users per cell (total of 4 users). The feedback
bI
m,k

denoted in cyan are received by the base station through the backhaul link.

that in this case, both the intra-cell and inter-cell interference phenomena degrade

the SINR (3.3) at the users.

Fig. 3.10 shows the overhead-performance tradeo↵ for the multi-cell multi-user

scenario with M = 2 and K = 2, for di↵erent intra-cell interference levels ↵. Note

that for ↵ = 0 (no interference), the performance is twice the single-cell single-user

case (see Fig. 3.5 for K = 2) since this corresponds to M = 2 independent two-user

cells. Also for this setting, as expected, the performance improves as the interference

↵ decreases. Each marker corresponds to a specific value of � in (3.23) and the

annotations denote the ratio of overhead that is spent on the desired feedback w.r.t.

the total overhead. Similar to the multi-cell single-user setting, we observe that

in the low overhead regime, the whole CSI overhead is dedicated to the desired

channel.
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Figure 3.10: Analysis of the tradeo↵ between feedback overhead and system
performance for the multi-cell multi-user setting. The system includes M = 2 base
stations, K = 2 users per cell (total of 2 users), and di↵erent interference ratios
↵. Each marker corresponds to an end-to-end architecture trained for a particular
value of � in (3.23). The text annotations near each marker represent the overhead
split between desired and interfering CSI.

3.4.6 Robustness to Di↵erent SNR

A key aspect in transitioning from proof-of-concepts to practical systems is

ensuring robustness across diverse scenarios. In this section, we address this

challenge by examining the mismatch between training and testing SNRs ⇢ at

di↵erent users. For these experiments, we suppose that the SNR is ⇢ 2 {0, 10, 20}

dB. We consider models trained at a single SNR, and over a range of SNR ⇢ ⇠

Unif{0, 10, 20} dB. Moreover, we also consider the same models after fine-tuning

only the BS side for the target test SNR. This last scenario corresponds to the
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Figure 3.11: Analysis for the single-user scenario without interference, i.e., M = 1,
K = 1, ↵ = 0, for di↵erent SNR ⇢. Each marker corresponds to an end-to-end
architecture trained for a particular value of � in (3.23).

assumption that the BS can have multiple models to pick from, while the users

may have one (or few) models that they can use.

Fig. 3.11 analyzes the robustness of the SNR for a single-user system. For large

overheads, fine-tuning improves the performance and all the fine-tuned models

match the best performance for each SNR. For small overheads, the models trained

at ⇢ = 0 dB do not improve after fine-tuning. On the other hand, the models

trained at the higher SNRs ⇢ = 10, 20 dB benefit from tuning when tested for ⇢ = 0
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Figure 3.12: Analysis for the two-user scenario without interference, i.e., M = 1,
K = 2, ↵ = 0, for di↵erent SNR ⇢. Each marker corresponds to an end-to-end
architecture trained for a particular value of � in (3.23).

dB. Moreover, for the higher SNRs the learned models for ⇢ = 10, 20 perform well

even without fine-tuning. The model trained over the range ⇢ 2 {0, 10, 20} dB

provides a good compromise if the users are SNR-agnostic.

Fig. 3.12 analyzes the robustness of the SNR for a two-user system with the

same SNR ⇢1 = ⇢2 = ⇢. For large overheads, fine-tuning improves the performance

and reduces the gap with the best-performing model for each SNR. We observe

similar behaviors as in the single-user case, where, in general, models trained at
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Figure 3.13: Analysis of the tradeo↵ between feedback overhead and system
performance for the multi-cell multi-user setting. The system includes M = 2 base
stations, K = 2 users per cell (total of 2 users), and di↵erent interference ratios ↵.
User 1 in each cell has an SNR of ⇢m,1 = 2, while user 2 has ⇢m,2 = 18. The solid
lines represent systems where all of the users share the same neural network, while
the users’ have individual (specialized) neural networks in the dashed lines. The
annotation denotes the percentage of overhead that is used by the user 1.

high SNR exhibit better generalization properties. Again, if the operating SNR is

unknown to the users, the model trained over the range ⇢ 2 {0, 10, 20} dB gives

satisfactory performance.

Fig. 3.13 analyzes the robustness with respect to di↵erent SNR for a two-cell

two-user system (4 users total). We assume that the SNR for the first user in each

cell is ⇢m,1 = 3 dB, and the SNR for the second user in each cell is ⇢m,2 = 12.55 dB.

The solid lines denotes systems where all the users share the same neural networks,

while the dashed lines represent systems where each user has its own learned model.

The annotation near the dashed lines denotes the percentage of overhead that is
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used by the first user in each cell – that is 50% for the solid lines since the users’

models are shared and work at the same CSI bitrate.

3.5 Summary

In this thesis, we have analyzed the tradeo↵ between feedback overhead,

performance, and distortion in the CSI feedback problem for multi-cell multi-

user massive MIMO systems operating in FDD. We have investigated the e↵ects of

intra- and inter-cell interference in the design of the task-aware CSI strategy. We

also addressed a robustness issue, comparing performance when the SNR at the

users does not match the one used for training. Our proposed deep learning-based

precoding-oriented CSI feedback mechanism demonstrates flexibility in the learning

part, thanks to an ad-hoc loss function that captures the key performance indicators

and it is adaptable to any neural architecture. In general, we observed that by

defining an unstructured loss function (3.23) (i.e., without giving weights specific

to the channel conditions), the system learns a policy that recalls water-filling.

As the overhead budget increases, the system first allocates feedback bits to the

strong components (i.e., CSI of the desired channel and/or user with better SNR),

then starts allocating overhead to the weaker components (i.e., CSI of interfering

channel and/or user with worse SNR).

Some future directions for this thesis include the extensions to system-level

simulations, with state-of-the-art channel models (e.g., ray tracing-based), where

the entire end-to-end communication stack is optimized jointly. Moreover, the

extension to the MIMO-OFDM framework, which includes the frequency dimension

of the channel gains, is also an interesting direction.
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Chapter 4

Detection-Oriented Relays

The relay channel, consisting of a source-destination pair along with a relay,

is a fundamental component of cooperative communications. While the capacity

of a general relay channel remains unknown, various relaying strategies, including

compress-and-forward (CF), have been proposed. In CF, the relay forwards a

quantized version of its received signal to the destination. Given the correlated

signals at the relay and destination, distributed compression techniques, such

as Wyner–Ziv coding, can be harnessed to utilize the relay-to-destination link

more e�ciently. Leveraging recent advances in neural network-based distributed

compression, we revisit the relay channel problem and integrate a learned task-aware

Wyner–Ziv compressor into a primitive relay channel with a finite-capacity out-of-

band relay-to-destination link. The resulting neural CF scheme demonstrates that

our compressor recovers binning of the quantized indices at the relay, mimicking the

optimal asymptotic CF strategy, although no structure exploiting the knowledge of

source statistics was imposed into the design. The proposed neural CF, employing

This chapter refers to a joint work with Ezgi Ozyilkan, and it will be presented at IEEE

SPAWC 2024 [60].
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finite order modulation, operates closely to the rate achievable in a primitive relay

channel with a Gaussian codebook. We showcase the advantages of exploiting

the correlated destination signal for relay compression through various neural CF

architectures that involve end-to-end training of the compressor and the demodulator

components. Our learned task-oriented compressors provide the first proof-of-

concept work toward interpretable and practical neural CF relaying schemes.

4.1 Introduction

The relay channel, as introduced by van der Meulen [61], is a building block

of multi-user communications. In this model, a relay facilitates communication

between a source and a destination by forwarding its “overheard” received signal

to the destination. As such, the relay channel comprises a broadcast channel, from

the source to both the relay and the destination, and a multiple access channel,

from both the source and the relay to the destination. The relay channel forms

the foundation of cooperative networking, which has been shown to be e↵ective in

mitigating fading [62, 63], increasing data rates [64], and managing interference [65].

With the advent of 6G, new forms of relaying and cooperation are envisioned for

communicating in highly dynamic settings [66, 67].

Despite decades of research, the capacity of the general relay channel is still

unknown to this day. Cover and El Gamal [68] provided upper and lower bounds

for the general relay channel by invoking information theoretic achievability and

converse arguments. These bounds coincide only in a few special cases, such as

the physically degraded Gaussian relay channel. Even though optimum relaying

strategies are not known in general, various e↵ective relaying techniques have been
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Figure 4.1: The primitive relay channel (PRC) under consideration. The red link
denotes out-of-band relaying between the relay and the destination.

proposed, which can be broadly categorized into two main classes: decode-and-

forward (DF) and compress-and-forward (CF); see [68] for a detailed analysis of DF,

CF, their variations and combinations. While DF is known to be e�cient in certain

scenarios [64], its achievable rate is bounded by the capacity of the source-to-relay

channel since the relay is required to perfectly decode the source information.

On the other hand, in CF, the relay refrains from directly decoding the source and

instead, compresses its received signal to send to the destination. Upon reception

of the compression index, the destination combines it with its own received signal

to decode the source information. Given that the received signals at the relay

and destination are correlated, the relay can leverage distributed compression

techniques to reduce the compression rate without requiring explicit knowledge

of the received signal at the destination. As such, it can utilize Wyner–Ziv (WZ)

source coding [69], also known as source coding with decoder-only side information,

to e�ciently describe its received signal. Unlike DF, CF relaying consistently

outperforms direct transmission since the relay always aids in communication, even

when the source-to-relay channel is poor. For additional discussion on scenarios
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where CF has been proven to be optimal, we direct readers to [70]. Despite its

benefits, the limitations of practical WZ implementations operating in the finite

blocklength regime have hampered the widespread use of CF relaying.

In this work, drawing on recent advances in neural distributed compression [71,

72], we revisit practical CF design and illustrate the potentials of learning for

reaping the benefits of CF. To highlight design constraints for CF, we focus on the

primitive relay channel (PRC) [73], depicted in Fig. 4.1, where there is an orthogonal

(out-of-band) noiseless link of rate R connecting the relay to the destination. Our

main contributions are summarized as follows:

• We present learned CF relaying schemes for the Gaussian PRC that are

based on task-aware neural distributed compressors, where the task is to

maximize the source-to-destination communication rate. We provide several

architectures, di↵ering in the way the distributed compression is carried

out. Each of these schemes consists of a compressor at the relay and (soft)

demodulator at the destination, both of which are learned in an end-to-end

fashion.

• We o↵er post-hoc interpretations of the resulting neural CF schemes on some

representative modulation schemes. Through visualizations, we show that the

task-aware neural relay quantizer exhibits binning (grouping) in the source

space, which is known to be information theoretically optimal. In addition,

we illustrate explainable decision boundaries for the learned demodulator

at the destination. These structures emerge from learning, not from design

choices based on system parameters.

• Using a comprehensive set of experimental results, we evaluate the performance
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of our neural CF strategies both in terms of communication and error rates.

Comparison with theoretical benchmarks suggests the e↵ectiveness of our

learning-based relaying frameworks.

• We provide a detailed analysis of robustness to varying signal-to-noise ratios

(SNRs) both at the relay and the destination. We empirically demonstrate

that training over a range of SNRs enables the resulting CF strategy to

maintain good performance across the range of interest.

Overall, our learned CF framework represents the first proof-of-concept investigation

towards practical and robust CF relaying, with the added benefit of yielding

interpretable results.

A few comments are in order regarding our motivation for considering the

PRC. Firstly, the PRC o↵ers a scenario where the compressed relay signal can be

readily transmitted to the destination. Compared to the general relay channel, the

PRC model decouples the relay transmission from that of the source, allowing a

natural setting to study CF. Note that the PRC model represents the simplest

channel coding problem, viewed from the source’s perspective, with a rate constraint

among the two receiving terminals (relay and destination). Simultaneously, it also

encapsulates the simplest compression problem, viewed from the relay’s perspective,

for enabling channel coding between the source and the destination. Secondly, PRC

provides a good model for scenarios in which a di↵erent wireless or wired interface is

used for relaying, such as base station cooperation. Finally, the relaying strategies

developed for the PRC can be extended to a more general relay channel model by

incorporating the multi-access reception at the destination. We also note that CF

relaying is optimal for the PRC if the relay is unaware of the source codebook, also
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known as oblivious relaying [5]. The oblivious setting is well-suited to the learning

framework, in which the relay is not explicitly informed about the transmission

strategy used by the source. Rather, a data-driven relay trains its compressor based

on samples of its channel output.

There is limited literature addressing practical CF designs, e.g., [74, 75]. Both

of these works proposed entropy-constrained scalar quantizer designs with binary

phase shift keying (BPSK) modulation for the half-duplex Gaussian relay channel,

with [74] considering lossless Slepian–Wolf (SW) coded nested quantization as

a practical form of WZ compression (following the WZ compressor proposed

in [76]), and [75] not taking into account the side information at the destination

while quantizing at the relay. In addition, these works relied on handcrafted and

analytical solutions, thereby constraining their generalization to more complex

communication settings. Unlike some of the previous distributed compression

work (e.g., [76, 77]) or the aforementioned relay quantizer designs, our proposed

CF strategies neither enforce any specific structure onto the model nor assume

prior knowledge about the source-to-destination communication strategies or link

qualities.

Recent learning approaches for the relay channel [78, 79, 80] considered a joint

source-channel setting, where the first two focused on image transmission via joint

source-channel coding, while the last one targeted text communication utilizing

attention-based transformer architectures. Our work, in contrast, concentrates only

on the channel part and addresses an important open problem in the cooperative

communications literature, namely how to make CF practical. While our learned

CF framework is built upon those of [71, 81, 82], an important distinction is that

in CF, the goal is to facilitate source-to-destination communication, and not to
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reconstruct the relay signal per se. In fact, it is demonstrated in [75] that relay

compression that minimizes mean squared error distortion can be significantly

suboptimal. We refer the reader to [72] for an overview of distributed compression

and practical designs, including those based on neural networks, that focus on

signal reconstruction.

This section is organized as follows. The system model is explained in Sec. 4.2.

The proposed neural CF schemes and learning procedures are described in Sec. 4.3.

Extensive numerical results are presented in Sec. 4.4. A concluding summary and

future work are discussed in Sec. 4.5.

4.2 System Model

In this section, we introduce the PRC model (Fig. 4.1) and provide an achievable

rate for CF, which is tight for oblivious relaying. Next, we explain the performance

criterion we adopt for testing relaying schemes that involve task-aware neural

distributed compressors.

4.2.1 Primitive Relay Channel (PRC)

We consider the PRC setup [73], illustrated in Fig. 4.1. The Gaussian PRC,

which we study in this work, is given by:

YR = hR X +NR,

YD = hD X +ND, (4.1)
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whereX denotes the signal transmitted by the source, YR and YD denote the received

signals at the relay and the destination, and hR and hD are the corresponding

channel gains, respectively. The noise components, NR and ND, are independent of

one another and of X.

In this work, we consider both real and complex-valued channels. For the real-

valued channel, without loss of generality, we consider X, hR, hD 2 R, NR ⇠ N (0, 1)

and ND ⇠ N (0, 1). For the complex-valued channel, we assume X, hR, hD 2 C,

NR ⇠ CN (0, 1) and ND ⇠ CN (0, 1). Note that by allowing for arbitrary (hR, hD),

one can incorporate the e↵ect of di↵erent SNRs for the source-to-relay and source-

to-destination links. As customary, we consider communication over a blocklength

of n, with n asymptotically large, and i.i.d. noise. For brevity, we omit the time

index in (4.1). The out-of-band relay-to-destination channel is represented by a

link with relay rate R bits/channel use.

For a general PRC p(yD, yR|x) with an oblivious relay, where the relay is agnostic

to the codebook shared by source and destination, it was shown that the capacity

can be attained by the CF strategy with time sharing [5]. Without time-sharing,

the following rate C is achievable [5]:

C = max I(X;YD, U), (4.2)

s.t. R � I(YR; U | YD), (4.3)

where maximization is with respect to the distribution p(x)p (u|yR). Here, U

corresponds to the relay’s compressed description of YR, and the rate constraint

in (4.3) coincides with the one that emerges in WZ rate–distortion function [69].

Recall that in CF, the relay regards its received signal YR as an unstructured
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random process jointly distributed with the signal received at the destination YD.

This enables the relay to exploit WZ compression [69], to e�ciently describe its

received signal. We note that the capacity of the PRC without oblivious relaying

constraint is still not fully characterized [5].

For the real-valued Gaussian PRC in (4.1), the following CF rate is achieved

with Gaussian input under power constraint E[|X|
2]  P [5]:

CCF =
1

2
log2

 
1 + �D +

�R

1 + 1+�D+�R
(22R�1)(�D+1)

!
, (4.4)

where �D = |hD|
2
P and �R = |hR|

2
P are SNRs at the destination and at the

relay, respectively. Note that, in the case of a complex-valued PRC, the factor of

1/2 in (4.4) is removed. It is shown in [5] that while the Gaussian input is not

necessarily optimal, the rate in (4.4) is at most 1/2 bit away from the capacity of

the Gaussian PRC, even if the relay is not oblivious. Hence, we will use (4.4) as a

benchmark for our learned CF communication rates.

4.2.2 Performance Criterion

For our learning-based CF frameworks, we assume a finite order modulation

such that an index W 2 {1, . . . , |X |}, which represents the output of the channel

encoder, is mapped to a symbol X 2 X , where X ⇢ R (or, X ⇢ C for complex-

valued signals) is a constellation of cardinality |X |. We consider a fixed modulation

scheme with equally likely symbols, and do not optimize over the constellation X

or over the distribution p(x). Incorporating the learned probabilistic and geometric

constellation shaping [83] into our neural CF frameworks is beyond the scope of

this work. Our goal is to jointly learn the encoder at the relay, which outputs a
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compressed description U , and the (soft) demodulator at the destination, which

outputs a probability distribution on W (Fig. 4.1) that maximize the mutual

information I(X;YD, U) subject to the relay rate constraint R, as in (4.2) and (4.3).

We assume the availability of good channel codes to be used in conjunction with

the modulation scheme, and as such the mutual information I(X;YD, U) can be

viewed as a CF achievable rate. In Sec. 4.3.3, we will discuss how this performance

criterion is incorporated into the objective function used in the learning process.

4.3 Neural Compress-And-Forward (CF) Schemes

In this section, by leveraging universal function approximation capability of

artificial neural networks (ANNs) [84, 85], we propose three neural CF schemes to

be employed in the PRC shown in Fig. 4.1. We describe these schemes in detail

in Sec. 4.3.1 and provide design insights in Sec. 4.3.2. Objective function and

implementation details are discussed in Sec. 4.3.3. As detailed in in Sec. 4.2.2,

the modulation scheme remains fixed throughout. On the other hand, the relay’s

encoder, employing CF strategy, and the destination’s demodulator will be parameterized

using ANNs, which will undergo joint optimization in an end-to-end manner.

4.3.1 Neural CF Architectures

Building onto neural distributed compressors proposed in [71], we consider

learning-based CF schemes that include neural one-shot WZ compressors (with

side information YD at the destination), paired with either a classic entropy coder

(EC) or a SW coder, at the relay. We will name these two variants as marginal

(marg.) and conditional (cond.) formulations, respectively. As a benchmark, we
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Figure 4.2: The three proposed neural CF schemes: (a) and (b) are based on
marginal (marg.) and conditional (cond.) formulations, (coupled with classic either
entropy or Slepian-Wolf (SW) coder) respectively; (c) is the point-to-point (p2p)
scheme. The learned parameters are indicated in blue. Note that the schemes in
(a) and (b) operationally correspond to task-aware neural Wyner–Ziv compressors,
since the encoder can exploit the side information YD at the receiver side. In (c),
neither parameters of e✓ and q are updated during the fine-tuning step (only
p� is learned). In the split I-Q variants of each scheme (not depicted), we have
two separate encoders that compress in-phase and quadrature components of the
complex-valued signal independently. Wherever we present relevant experiments, we
label the depicted respective scheme illustrated in this figure as joint I-Q, indicating
a single encoder for both in-phase and quadrature components.

also consider a neural one-shot point-to-point (p2p) compressor coupled with a

classic EC. All of these learned compressors are combined with a neural demodulator
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available at the destination, which has access to the side information YD.

The overall proposed learned CF relaying architectures are illustrated in Fig. 4.2.

The encoder’s ANN at the relay is denoted by e✓(·), with ✓ representing its

parameters; the probability distribution of the relay encoder’s output (which

is then used by the EC or SW coder) is modeled with q , parameterized by ⇣;

the demodulator’s ANN is p�(w|yD, e✓(yR)), where � denotes its parameters. The

mapping defined by the demodulator p� represents the posterior probability over the

alphabet {1, . . . , |X |} (soft decision), which serves as an approximation of the true

posterior distribution p(w|yD, e✓(yR)). In the learning process of a point-to-point

compressor, as shown in Fig. 4.2c, we initially train a demodulator p⇠(w|e✓(yR))

to prevent this neural compressor from utilizing the side information YD during

training. The pre-trained point-to-point neural compressor as such (highlighted

in green) is then used as input for fine-tuning the demodulator p�(w|yD, e✓(yR)),

which incorporates side information (highlighted in orange).

We set the relay encoder’s output as U , e✓(YR) as in Fig. 4.1. Envisioning

a practical scheme, we have U as discrete. Specifically, we have that e✓(YR) 2

{1, ..., K}, where K is a model parameter. This parameter K is chosen large

enough to guarantee su�cient support for the encoder output. To facilitate the

learning process of the encoder, we will use a probabilistic model for e✓(YR) during

training. We set the encoder output in a deterministic way, as in [71], that

is u = argmax
k2{1,...,K} e✓(yR) for a given YR = yR. Note that the encoder e✓

operates in an unordered categorical space, outputting one of the categories of the

quantization index k 2 {1, . . . , K} for each input realization.

Similar to [71], without loss of generality, we define the probabilistic models

e✓(YR) (during training) and q as discrete distributions with probabilities as
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follows:

Pk =
exp↵kP
K

i=1 exp↵i

, (4.5)

for k 2 {1, . . . , K}. The unnormalized log-probabilities (logits) ↵i are either

directly treated as learnable parameters or computed by ANNs as functions of

the conditioning variable. We note that the lossless compression rates induced

by the models q are attainable with high-order classic EC [86] or SW coder [87],

operating on discrete values.

For experiments involving complex-valued modulation schemes, the CF architectures

depicted in Fig. 4.2 compress the in-phase (i.e. real) and quadrature (i.e. imaginary)

components of YR jointly. We also explore the variants of these architectures

illustrated in Fig. 4.2 (not shown), where the in-phase and quadrature components

are given as input to two separate encoders, each of which has parameters of its own.

The compression rate in this case is computed as the sum of the rates achieved by

the in-phase and the quadrature entropy coding schemes (involving either classic

EC or SW coders for both). Similar to the architectures outlined in Fig. 4.2, we

still employ a single demodulator p� for all these variants, which takes as input

the two indices coming from the compressed representations of the in-phase and

the quadrature components, along with the side information YD. We will refer to

these architectural configurations as the split I-Q variants, whereas we will name

the original architectures shown in Fig. 4.2 as the joint I-Q versions.

Although joint compression of in-phase and quadrature components using

schemes illustrated in Fig. 4.2 should, in principle, outperform independent processing

as in the split I-Q variant, we argue that incorporating domain knowledge into the

design, especially when training learning-based schemes, can sometimes facilitate

finding the optimal solution for the algorithm. This will be further clarified in
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Sec. 4.4.2.

We refer the readers to Sec. 4.3.3 for further details on the training procedure.

4.3.2 Rationale Behind Our Design Choices

While the popular class of neural image compressors (e.g., [88, 89, 90]) seems

well-suited for distributed compression, and more specifically for the WZ problem,

analysis in [82] reveals that it fails to learn e�cient many-to-one mappings exploiting

the side information. Consequently, these popular schemes do not recover proper

binning schemes, which are known to be optimal in the asymptotic setting [69],

for abstract exemplary sources (such as the quadratic-Gaussian case), severely

limiting their compression e�ciency. In [82], it is hypothesized that this limitation

stems from the inherent spectral bias [91] of the popular class of neural compressors.

This spectral bias arises because the encoder outputs operate on the real line.

This inherently favors learning smooth functions, consequently hindering these

neural compressors from capturing highly discontinuous functions and many-to-one

mappings such as binning.

Based on this, our proposed learning-based CF schemes, as in the case of the

learned WZ compressors [71, 82], operate directly within an unordered categorical

space, similar to traditional vector quantization. Our neural relay compressors are,

therefore, in the form of entropy-constrained vector quantizers that can more easily

leverage correlated signal available at the destination. Note that this is in contrast

to the popular class of neural compressors [88, 89, 90], where each of the dimensions

at the encoder output is subjected to entropy-constrained scalar quantization in an

ordered transform space operating on real line.

The design choices explained in Sec. 4.3.1 maintain the parametric families
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in their most general form, avoiding any unnecessary imposition of structure. In

particular, these would enable the model e✓ to recover, when necessary, quantization

schemes featuring discontiguous quantization bins, reminiscent of the random

binning operation in the achievability of the WZ theorem [69], which also appears

in the CF relaying strategy [5, 68].

4.3.3 Objective Function

In contrast to prior works on neural distributed compression [71], which focus on

minimizing the distortion in the reconstruction of the input source in tandem with

variable rate entropy coding, our goal in this work is to optimize the operational

trade-o↵ between relay-to-destination compression rate and source-to-destination

communication rate in the PRC setup, underscoring the task-aware nature of the

relay compressor design.

For our objective function, building onto the relay rate in (4.3), we first consider

the following upper bound:

I(YR; U | YD)  H(U | YD), (4.6)

 E [� log2 q (e✓(yR))]
�
= R̃, (4.7)

where R̃ represents an operational upper bound on the relay’s compression rate,

which is limited by R. The inequality in (4.7) is due to the fact that the cross-

entropy is larger or equal to entropy [41, Theorem 5.4.3]. Here, R̃ encapsulates

the compression rate of a relay quantizer having a one-shot encoder coupled with

high-order entropy coder over large blocks of the quantized source.

Similarly, we also establish a lower bound based on the achievable rate in (4.2)
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as follows:

I(X;YD, U) = H(W )�H(W | YD, U), (4.8)

� log(|X |)� D̃, (4.9)

where D̃
�
= E [� log(p�(x|yD, e✓(yR)))], and (4.9) is a lower bound on the source-to-

destination communication rate C from (4.2). Here, (4.8) follows from X being

a one-to-one deterministic function of W , and (4.9) is again due to cross-entropy

being larger or equal to entropy. Since we have a fixed modulation scheme and do

not perform any probabilistic shaping, we have H(W ) = H(X) = log(|X |) in (4.9).

For a demodulator making hard decisions as:

Ŵ = arg max
w2{1,...,|X |}

p�(w|yD, e✓(yR)), (4.10)

the corresponding symbol error rate (SER) is defined as:

SER = P (W 6= Ŵ ). (4.11)

Since minimizing the cross-entropy D̃ is known to be a surrogate for maximizing

the accuracy of classification (that is symbol detection) [92], minimizing D̃ also

operationally corresponds to minimizing SER.

Building onto the above bounds, the training objective of all the proposed

neural CF relaying schemes depicted in Fig. 4.2 can be described by the following
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loss function:

L(✓,�, ⇣) = R̃ + �D̃,

(4.12)

where R̃ and D̃ are from (4.7) and (4.9) respectively, and � > 0 controls the trade-

o↵. The optimized e✓, q , and p� models, parameterized by ✓, ⇣ and �, yield the

ANN-based encoder, EC or SW coder, and demodulator component, respectively.

The upper bound in (4.7) corresponds to the compression rate achievable by a CF

relaying scheme employing a one-shot task-aware encoder e✓ and demodulator p�,

both coupled with an entropy code based on q (either classic EC or SW coder). This

asymptotic compression rate is equivalent to the cross-entropy E [� log2 q (e✓(yR))].

Similarly, the lower bound in (4.9) corresponds to the overall communication rate

achieved by a capacity-achieving channel code, operating over large blocklengths,

used in conjunction with the (soft) demodulator p�. Therefore, minimizing the loss

function in (4.12) enables the end-to-end optimization of this operational relaying

scheme.

Consistent with findings in [74, 75], we empirically confirmed that minimizing

mean squared error distortion metric at the quantizers may not always maximize

the source-to-destination communication rate. The intuition for this is as follows:

A distortion-minimizing quantizer aims to preserve the relay’s received signal,

whereas the relay quantizer should instead retain the source information as the

relay’s end goal is to facilitate the communication in the source-to-destination

link, highlighting the task-aware nature of the compressor design objective at

hand. Grounded in information theoretical principles following [5], this key insight
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underlies the objective function (see (4.12)) for our neural CF relaying schemes.

Adjusting the trade-o↵ parameter � in (4.12) results in di↵erent points within

the achievable region. The learnable parameters are amenable to joint optimization

using stochastic gradient descent (SGD) since the loss function is di↵erentiable with

respect to them. The gradients can be computed using automatic di↵erentiation

methods, as implemented in deep learning frameworks such as JAX [93].

As in the popular class of neural compressors [90], we use SGD to optimize all

learnable parameters jointly, which relies on Monte Carlo approximation for the

expectations in the loss function. In SGD, the expectations in the loss functions

are replaced by averages over batches of samples B, and the order of di↵erentiation

and summation is exchanged due to linearity. For a given generic pair of X = x

and Y = y, let `✓(x, y) denote the sample loss with parameters ✓ (represented as

one of the sample loss functions inside the brackets in (4.12)). In this case, Monte

Carlo approximation yields:

@

@✓
E[ `✓(x, y)) ] ⇡

1

|B|

X

(x,y)2B

@`✓(x, y)

@✓
. (4.13)

This requires that we draw some samples from the model e✓ throughout training.

The Gumbel-max trick, initially proposed in [94], provides a method to draw

samples from any discrete distribution. It does so by drawing samples from a

distribution of K states (as in (4.5)) as follows:

argmax
k2{1,...,K}

{↵k +Gk}, (4.14)

where Gk are i.i.d. samples from a standard Gumbel distribution.

Recognizing that the derivative of the argmax operator in (4.14) is zero
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everywhere except at the boundaries of state changes, we opt for a continuous

relaxation of this operator during training to carry out SGD. Such a relaxation is

provided by the Concrete distribution, introduced in [95]. Rather than obtaining

discrete (hard) samples, this method produces soft samples, forming a vector of

length K where the mass is distributed across multiple states instead of being

concentrated in one. The index k 2 {1, . . . , K} of such a soft sample is determined

using a softmax function:

Uk =
exp((↵k +Gk) / t)

P
K

i=1 exp((↵i +Gi) / t)
, (4.15)

where t is a temperature parameter that controls the amount of relaxation. As

t! 0+, the soft samples converge to their hard counterparts, indicating that the

Concrete distribution converges to a discrete one. Throughout training, we also

choose the Concrete distribution for the models q to match the distribution of

samples from e✓.

During evaluation, we transition from Concrete distributions back to their

discrete counterparts. As explained in Sec. 4.3.1, we also use a deterministic

encoding function equivalent to the mode of e✓, instead of sampling from it, by

setting encoder output as u = argmax
k2{1,...,K} e✓(yR).

Note that in spite of considering specific modulation schemes in training, we do

not assume a priori knowledge of the modulation scheme by the relay in our neural

CF schemes. The parameters {✓,�, ⇣} are learned solely in a data-driven fashion

from samples, through the proposed loss function in (4.12). Similarly, the relay

also has no prior information on the channel gains hR and hD (see (4.1)). Further

improvement in the performance may be obtained by also learning an optimized
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probabilistic shaping (p(x) in optimization (4.2)-(4.3)) and a geometric shaping

(constellation X ) of the modulation [83].

4.4 Results and Discussion

While our framework can be adapted to di↵erent modulation schemes and PRC

setups, we adopt the following system configuration to showcase numerical results.

As stated in Sec. 4.2, we assume equally likely symbols, i.e., p(x) = 1/|X |. The

average power constraint on the transmitted signal is E[|X|
2] = P . For real-valued

channels, we consider BPSK, 4-PAM, and 8-PAMmodulations, having constellations

X = {±A}, X = {±A,±3A}, and X = {±A,±3A,±5A,±7A}, respectively, where

A is chosen to satisfy the power constraint P . For complex-valued channels, we

consider 4-QAM and 16-QAM modulations with power constraint P . We recall

that the SNR at the destination and at the relay is defined as �D = |hD|
2
P and

�R = |hR|
2
P , respectively.

For the parametrization of e✓ and p�, we use ANNs of three dense layers, with

100 units each, except the last one, and leaky rectified linear unit as the activation

function. In our experiments, we observed that increasing the size of the networks

or employing di↵erent activation functions did not lead to improved results. The

demodulator p� receives a concatenated vector comprising both its inputs, e✓(YR)

and YD.

We perform our experiments using the JAX framework [93] and employ Adam [96],

a widely used variant of SGD. We use a learning rate of 10�4, which we chose by

monitoring the convergence of the loss function in the high-rate regime, reducing

it by a constant factor of 10 each time the loss visibly plateaued. We found that
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convergence of the high-rate models takes longer than low-rate models, so we

simply carried over our schedule to the lower-rate cases. All neural CF schemes

are trained for 500 epochs with randomly initialized network weights. We use a

batch size of B = 1024 (as in (4.13)) and set the model parameter K = 32. The

output dimension of p� is set to be |X |, since this probabilistic model represents

the posterior over the transmitted constellation.

We evaluate our learned CF relaying schemes in terms of the trade-o↵ between

the relay rate R (using the proxy R̃ in (4.7)), and two metrics: (i) the communication

rate I(X;YD, U), for which we use the lower bound (hence, a pessimistic estimate)

in (4.9), and (ii) the SER = P (W 6= Ŵ ) (see (4.11)). All empirical estimates

of compression rates, communication rates, and bit error rates are obtained by

averaging over at least 106 source realizations.

The rest of this section is organized as follows. Baseline references for R = 0

and R!1 are presented in 4.4.1. The performance of various learned CF relay

schemes is analyzed in 4.4.2, while an interpretation of the corresponding relay’s

encoder and destination’s demodulator is provided in 4.4.3. Finally, results for

robustness against di↵erent SNRs are shown in 4.4.4.

4.4.1 Baselines

The regimes where R = 0 and R ! 1 are referred to as without relay and

perfect relay scenario, respectively. When R = 0, the destination has only access to

YD, having an e↵ective SNR of �D. In the perfect relay regime (R!1), however,

the destination has full access to both YD and YR, and it optimally combines

them. This e↵ectively results in an increased SNR of �D + �R compared to the

scenario without a relay. In these two regimes, mutual information and SER can be
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numerically computed for the considered modulations as a function of (�D, �R) [97].

When 0 < R < 1, we consider CCF from (4.4) (or its complex channel

equivalent) as a benchmark for the achievable communication rate of our learned

CF schemes with discrete modulations. Increasing the modulation order, |X |,

gives more degrees of freedom for the end-to-end learned communication system to

approach the rate of a PRC that assumes Gaussian inputs, as represented by CCF

in (4.4).

4.4.2 Performance of the Learned CF Relaying Schemes

For the first set of results, we assume that the SNR is the same for both the

destination and the relay, i.e., �D = �R.

Fig. 4.3 shows the SER and mutual information for the 4-PAM modulation

when �D = �R = 13 dB. In this case, YR and YD, are highly correlated. We observe

that the three models exhibit di↵erent trade-o↵s. Recall that, in the point-to-

point variant depicted in Fig. 4.2c, e✓ is not able to use YD as side information in

compression. As seen in Fig. 4.3, the conditional model yields the best performance

as the side information is also exploited within the SW coder. The marginal model

surpasses the point-to-point model mainly due to exploiting the side information

during compression (see Sect. 4.4.3 for a more detailed discussion), yielding rate

reduction.

Similarly, Fig. 4.4 contains the SER and the mutual information for 16-QAM

modulation when �D = �R = 7 dB. In this case, we also show results where two

separate encoders compress the in-phase and quadrature part of YR independently –

these models are annotated as split I-Q variants, as introduced in Sec. 4.3.1. We

observe that at lower rates, the architectures depicted in Fig. 4.2, which correspond
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Figure 4.3: Symbol error rate (SER) and mutual information as a function of the
relay-to-destination rate R, for the 4-PAM modulation with �D = �R = 13 dB.
The colored lines represent the performance of three neural CF relay architectures
(Fig. 4.2), where each marker corresponds to a unique model trained for a particular
value of � in (4.12). The horizontal black lines provide baseline results without
relaying (R = 0) and with perfect relaying (R!1).
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Figure 4.4: Symbol error rate (SER) and mutual information as a function of the
relay-to-destination rate R, for the 16-QAM modulation with �D = �R = 7 dB.
The colored lines illustrate the performance of three neural CF relay architectures
depicted in Fig. 4.2, accompanied by their respective split I-Q variants (as introduced
in Sec. 4.3.1). In the figure, each marker corresponds to a unique model trained for
a specific value of � in (4.12). The horizontal black lines indicate baseline results
without relaying (R = 0) and with perfect relaying (R!1).



90

to joint I-Q compression, perform best across three di↵erent schemes (conditional,

marginal and point-to-point). In these models, both the in-phase and quadrature

components are fed into a single encoder e✓, enabling joint compression of real and

imaginary parts of the complex-valued input signal. This allows these compressors

to learn more flexible quantization boundaries (not depicted), making them more

e�cient in the low-rate regime. However, at higher rates, we observe that the split

I-Q variants outperform their joint counterparts. Since one would expect “grid-like”

quantization boundaries for QAM modulations, imposing separate processing on

real and imaginary parts in the split I-Q models, e↵ectively leverages this domain

knowledge, enabling them to approach capacity at high rates. In contrast, all of

the joint I-Q architectures for conditional, marginal and point-to-point variants

saturate around a capacity value of 3. These results suggest that as the modulation

order and relay rate increase, incorporating domain knowledge into the compressor

design could be beneficial. Imposing such well-informed design structures in this

case further enhances the e�ciency of learned CF relaying schemes, particularly at

high rates, where training neural compressors becomes relatively more challenging

compared to the low rate regime.

Fig. 4.5 compares CCF from (4.4) with the mutual information obtained with

the marginal formulation (Fig. 4.2a) for the BPSK, 4-PAM and 8-PAM modulations.

Here, the SNR for all the considered schemes is �D = �R = 3 dB, suggesting a lower

correlation between YR and YD compared to the one illustrated in Fig. 4.3. As

expected, increasing the modulation order narrows the gap to the bound in (4.4).

Notably, the marginal variant meets the performance of the corresponding perfect

relay (R!1) baseline at higher rates.

Similarly, Fig. 4.6 compares CCF from (4.4) for the same modulation schemes
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Figure 4.5: Mutual information for the marginal model (Fig. 4.2a) in case of BPSK,
4-PAM and 8-PAM modulations with �D = �R = 3 dB. The solid line represents
CCF in (4.4) [5], obtained for Gaussian inputs. The dotted lines represent the perfect
relay (R!1) bounds for the respective curves, similar to Figs. 4.3 and 4.4.
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Figure 4.6: Mutual information for the marginal model (Fig. 4.2a) in case of BPSK,
4-PAM and 8-PAM modulations with �D = �R = 13 dB. The solid line represents
CCF in (4.4) [5], obtained for Gaussian inputs. The dotted lines represent the perfect
relay (R!1) bounds for the respective curves, similar to Figs. 4.3, and 4.4.
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Figure 4.7: Mutual information for the marginal model (Fig. 4.2a) in case of 4-QAM
and 16-QAM modulations with �D = �R = 7 dB. The solid line represents CCF

in (4.4) [5], obtained for Gaussian inputs. The dotted lines represent the perfect
relay (R!1) bounds for the respective curves, similar to Figs. 4.3 and 4.4. In
the case of the 16-QAM modulation shown here, we select the best performing
model among two variants of the marginal neural relay quantizers: the joint I-Q
scheme depicted in Fig. 4.2a and the split I-Q architecture introduced in Sec. 4.3.1,
both of which are plotted in orange in Fig. 4.4.

considered in Fig. 4.5, but now at higher SNR �R = �D = 13 dB, suggesting a

stronger correlation between YR and YD. We note that at higher SNR, as theory

suggests, the rate allowed by higher-order modulation is greater and the performance

gap between di↵erent modulation schemes is larger. At high rates, for each of

the modulation schemes considered, our neural CF schemes once again match the

communication rate bound for perfect relay (R!1), mirroring the trend observed

in Fig. 4.5.

Considering next a complex-valued communication scenario, we illustrate the

results obtained with 4-QAM and 16-QAM modulations in Fig. 4.7, where we set
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�R = �D = 7 dB. For this case, we use an adapted version of CCF from (4.4) that

considers instead a complex-valued PRC. For the 16-QAM results depicted, we

select the best-performing variant for the marginal model (either the joint I-Q

scheme shown in Fig. 4.2a or the split I-Q version, both of which are introduced in

Sec. 4.3.1). Consistent with the trends observed in Figs. 4.5 and 4.6, our neural CF

scheme again meet the respective perfect relay baselines (R!1). These empirical

results further confirm that our learning-based relay compression schemes can

be easily adapted to any chosen fixed modulation, scoring higher communication

throughput as the order of modulation increases.

4.4.3 Interpretability of the Learned CF Relaying Schemes

The maximum a posteriori (MAP) estimator for W in the PRC of Fig. 4.1 is as

follows:

ŵ = argmax
w

p(w|yD, u), (4.16)

= argmax
w

p(yD|w) p(u|w) p(w), (4.17)

where we have used the independence of yD and u given w. For equally likely

symbols, p(w) is a constant and therefore, can be removed from (4.17). Note

that the term p(u|w) represents the likelihood of w based on the relay’s quantized

observation u, and it updates the destination’s likelihood p(yD|w) in (4.17). For

reference, without the relay, the optimal decision thresholds on YD for the maximum

likelihood estimator for a PAM (QAM) modulation under Gaussian noise would

be the intersection between adjacent likelihoods, that is the middle point (line)

between adjacent symbols [97].
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We recall that for our learned CF schemes introduced in Sec. 4.3, u = e✓(yR),

and the posterior estimated by the neural demodulator is p�(w|yD, e✓(yR)). In the

remainder of this section, we provide results that help to visualize and interpret the

quantization boundaries recovered by the neural encoder e✓ and learned MAP (4.10)

decision thresholds adopted by the demodulator. First, we show that the marginal

CF variant (Fig. 4.2a) groups the quantized indices at the relay, by assigning

the same quantization index to discontiguous intervals in the source space. This

empirical evidence suggests that the scheme e↵ectively uses the side information

YD during compression. Next, we show how the relay’s likelihood p(e✓(yR)|w)

operationally shifts the decision thresholds.

Fig. 4.8 illustrates the marginal CF scheme and the demodulation’s hard decision

regions (see (4.10)) for 4-PAM with �D = �D = 13 dB and relay rate of R ⇡ 1.

The vertical axis and horizontal axis show YR and YD, respectively. The colors

represent the transmitted indices e✓(YR) by the relay, and the horizontal lines are

the corresponding quantization boundaries. Note that this neural CF architecture

exhibits binning (grouping) since non-adjacent intervals are assigned to the same

index (same color). It is worth noting that this recovered grouping behavior is

similar to the random binning operation in the achievability proof of the WZ

theorem [69] and also in the achievability of CF [68]. This emergence of learned

one-shot binning behavior also explains the further reduction in relay rate compared

to the point-to-point model, as illustrated in the experimental results shown in

Figs. 4.3 and 4.4. Unlike the marginal scheme, the point-to-point model (Fig. 4.2c),

however, lacks access to the side information signal YD, which is available at the

decoder, during compression. Therefore, this latter model cannot learn a binning

behavior in the relay compressor (not depicted). In contrast, the conditional variant
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Figure 4.8: Visualization (best viewed in color) of the learned CF strategy (marginal
scheme in Fig. 4.2a) and demodulation decisions for the 4-PAM modulation with
� = 13 and relay rate R ⇡ 1. The horizontal lines denote the quantization
boundaries on YR, and the colors designate the transmitted index e✓(YR). The
vertical lines denote the hard decision boundaries for the demodulator, and the
markers represent the decisions. The transmitted symbols (denoted by cross,
triangle, star, square) are also reported near the axis for reference.
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(Fig. 4.2b) leverages the side information not only during compression but also

within the entropy coding stage. This enables the conditional scheme to execute

binning over long sequences i.e., in a multi-shot fashion. Note that such a high-order

binning scheme, facilitated by the SW coder, is inherently more e�cient than the

one-shot binning achievable by an encoder at the relay. As the model e✓ compresses

each source realization one at a time, it can only bin the quantized indices at the

relay in a one-shot fashion.

The vertical lines in Fig. 4.8 denote the hard decision boundaries, where the

markers denote the decisions Ŵ . We observe that the decision boundaries are shifted

with respect to the midpoints between transmitted symbols (optimal boundaries

without relaying). This highlights the interpretability of our neural CF relaying

scheme. For example, when cross or star are transmitted, the index blue will be

the (most likely) relayed index. In this case, the decision regions for cross and star

at the destination are larger than the other symbols.

Fig. 4.9 shows the learned marginal CF strategy for the complex-valued 4-QAM

modulation when �D = �R = 7 dB and relay rate of R ⇡ 1. The vertical and

horizontal axis of each subfigure represent real and imaginary parts of YR and

YD. Fig. 4.9a reports the output of the relay’s encoder, where the color represents

e✓(YR). One can note that the regions surrounding the farthest symbols are paired

with the same encoding (color) e✓(YR). Similar to Fig. 4.8, one can argue that this

is yet another instance of binning in the relay compressor. Fig. 4.9b shows the hard

decision boundaries on YD when e✓(YR) corresponds to the blue index. Meanwhile,

Fig. 4.9c shows the hard decision boundaries on YD when e✓(YR) corresponds to

the red index. Again, the decision boundaries are shifted to favor the symbols that

were most likely to be received at the relay.
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(a)

(b) (c)

Figure 4.9: Visualization (best viewed in color) of the learned CF strategy (marginal
scheme in Fig. 4.2a) and demodulation decisions for the 4-QAM modulation with
� = 7 dB and relay rate R ⇡ 1. Figure (a) shows the quantization boundaries on
YR (on the complex plane), and the colors designate the transmitted index e✓(YR).
Figures (b) and (c) show the hard decision boundaries for the demodulator as a
function of YD (on the complex plane), where di↵erent colors represent the di↵erent
decisions. Figure (b) represents the decisions when e✓(YR) corresponds to the blue
index from Figure (a); Figure (c) represents the decisions when e✓(YR) corresponds
to the red index from Figure (a). The transmitted symbols (denoted by cross,
triangle, star, square) are also reported for reference.
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In practice, Figs. 4.8 and 4.9 can be used as look-up tables for direct deployment

of the resulting CF relaying strategies, including both the relay’s encoder and

the destination’s demodulator. Although ANN-based architectures (Fig. 4.2) were

used to minimize the loss function in (4.12), the actual CF scheme and the hard

demodulator implementation at test time rely only on the learned quantization

boundaries and threshold values shown in Figs. 4.8 and 4.9.

4.4.4 Robustness to Signal-to-Noise Ratio (SNR) Variations

In Sections 4.4.1, 4.4.2, and 4.4.3, we evaluated the performance at the same

SNRs used for training. In this section, we analyze robustness with respect to the

training SNR. We consider 4-PAM modulation for the source X, and a range of

test SNRs �D, �R 2 {0, 1, . . . , 6} dB. We consider models that satisfy the relay rate

constraint of R / 1. Note that for this SNR range, it is known that the 4-PAM

capacity is superior to the BPSK one, and almost equivalent to those achieved by

higher order PAM modulations [97]. This is also evident in Fig. 4.5 at �D = �R = 3

dB. Adapting the modulation order to the SNR is a key component of modern

communication systems relying on link adaption [98], and as such, we assume

4-PAM modulation is only used in the above SNR range.

We study the following test scenarios:

1. Same SNR at both the relay and the destination, i.e., �D = �R = � 2

{0, 1, . . . , 6} dB;

2. Relay SNR fixed at �R = 3 dB, and variable destination SNR �D 2 {0, 1, . . . , 6}

dB;

3. Destination SNR fixed at �D = 3 dB, variable relay SNR �R 2 {0, 1, . . . , 6}
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Figure 4.10: Robustness analysis when the destination and the relay have the same
test signal-to-noise ratio (SNR) �D = �R = �. The rate constraint is R ⇡ 1 for all
points. The lines represent the mutual information obtained with the learned CF
strategy (marginal scheme in Fig. 4.2a), as a function of the testing SNR �. The
dotted lines represent models trained for a single value of �. The solid blue line
represents the model trained for robustness over the SNR range of interest, i.e., the
training SNR is � ⇠ Unif.{0, 1, . . . , 6} dB. The red stars represent the points where
testing and training SNR match.

dB.

For all of the tests above, we consider baseline models that are trained at a single

SNR �D = �R = �, where � 2 {0, 1, . . . , 6} dB. In the remainder of this subsection,

we analyze the performance of the baselines on the abovementioned scenarios, and

propose alternative learning strategies based on robust training.
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4.4.4.1 Testing at the same SNR at both the relay and the destination

Fig. 4.10 shows the mutual information when the same SNR is experienced

at both the destination and the relay, i.e., �D = �R = �. The rate constraint is

satisfied for all the models R ⇡ 1 (not shown here). We also include a robust model

trained on a range of SNRs �D = �R = � ⇠ Unif.{0, 1, . . . , 6} dB. Note that the

baseline models trained at a single SNR perform well for adjacent SNRs too. The

robust model trained on the range � 2 {0, 1, . . . , 6} dB exhibits a good compromise,

o↵ering performance similar to the model trained for the SNR in the middle of the

range, and minimal performance degradation in the lower and higher end of the

SNR range. Another observation is that models trained for lower SNRs exhibit less

degradation at higher SNRs compared to the opposite case; in fact, the models

trained at high SNRs fail at lower SNRs.

4.4.4.2 Testing on a range of SNRs at the destination, fixing the SNR

at the relay

Fig. 4.11 shows the mutual information achieved as a function of the SNR

at the destination �D 2 {0, 1, . . . , 6} dB, when the SNR at the relay is fixed

as �R = 3 dB. In other words, the statistics of the relay’s received signal do

not change, while the received signal YD at the destination has variable SNR

levels. We also include two robust models, one trained for a single �R = 3

dB, and a range of �D ⇠ Unif.{0, 1, . . . , 6} dB, and another trained for SNRs

�D = �R = � ⇠ Unif.{0, 1, . . . , 6} dB. We note that the performance of the model

trained on a range (with the same SNR on both �D = �R = �) is equivalent to the

performance of the robust model trained for [�R = 3 dB, �D 2 {0, 1, . . . , 6} dB].
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Figure 4.11: Robustness analysis when the relay signal-to-noise ratio (SNR) is
fixed �R = 3 dB, and the destination SNR changes �D 2 {0, 1, . . . , 6} dB. The lines
represent the mutual information obtained with the learned CF strategy (marginal
scheme in Fig. 4.2a), as a function of the destination SNR �D. The dotted lines
represent models trained for a single value of �D = �R = �. The solid blue line
represents the model trained over equal SNR at both the relay and the destination
�D = �R = � ⇠ Unif.{0, 1, . . . , 6} dB. The green triangles represent the model
trained for a fixed SNR at the relay �R = 3 dB, and variable SNR at the destination
�D ⇠ Unif.{0, 1, . . . , 6} dB.

4.4.4.3 Testing on a range of SNRs at the relay, fixing the SNR at the

destination

Fig. 4.12 illustrates the mutual information as a function of the SNR at the relay

�R 2 {0, 1, . . . , 6} dB, when the SNR at the destination is fixed as �D = 3 dB. In this

case, the received signal YD at the destination has fixed statistics, while the relay’s

received signal is subjected to di↵erent SNR levels. As above, we include two robust

models, one trained for a single �D = 3 dB, and a range of �R ⇠ Unif.{0, 1, . . . , 6}
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Figure 4.12: Robustness analysis when the destination signal-to-noise ratio (SNR)
is fixed �D = 3 dB, and the relay SNR changes �R 2 {0, 1, . . . , 6} dB. The
lines represent the mutual information obtained with the learned CF strategy
(marginal scheme in Fig. 4.2a), as a function of the relay SNR �R. The dotted lines
represent models trained for a single value of �D = �R = �. The solid blue line
represents the model trained over equal SNR at both the relay and the destination
�D = �R = � ⇠ Unif.{0, 1, . . . , 6} dB. The green diamonds represent the model
trained for a fixed SNR at the destination �D = 3 dB, and variable SNR at the
destination �R ⇠ Unif.{0, 1, . . . , 6} dB.
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dB, and another one trained for SNRs �D = �R = � ⇠ Unif.{0, 1, . . . , 6} dB. Similar

to the previous scenario, the performance of the model trained on a range (with the

same SNR on both �D = �R = �) is equivalent to the performance of the robust

model trained for [�D = 3 dB, �R 2 {0, 1, . . . , 6} dB]. We also note that, in this

scenario, the baseline models trained at an SNR in the vicinity of �D = �R = � = 3

dB perform well.

In summary, we showed that training on a range of equal SNRs for both at the

relay and the destination provides a good compromise in performance. This suggests

good generalization capabilities for both the compressor and the demodulator,

eliminating the need for ad-hoc SNR choices during training. Experimental results

suggest that knowing the SNR at the destination is generally more important in

order to achieve good performance. In principle, the destination could have a

fine-tuned model for each SNR (or SNR range) it experiences. Concurrently, the

experiments demonstrate that training robust relay nodes only requires a rough

estimate of the SNR range at the relay.

4.5 Summary

In this work, we have revisited CF relaying in the context of learned distributed

compression and incorporated a task-oriented neural WZ compressor into a PRC

setup as a practical form of CF relaying mechanism. Our proposed framework

represents the first proof-of-concept work for an interpretable learned CF relaying

scheme, where both the compressor and the demodulator components are parameterized

with lightweight ANNs. Such a design choice also enables us to provide post-hoc

explanations of these learned components by explicitly visualizing their behaviors.
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Our results demonstrate that the learned CF schemes exhibit characteristics of the

optimal asymptotic CF, such as binning of the quantized indices at the relay. We

also note that the performance of these schemes, across various modulation schemes

(both real and complex-valued), meets the communication rate of perfect relay

(R!1) with minimal relay rate R. We have also demonstrated that training over

a range of SNRs, both at the destination and the relay, provides good generalization

over the range of interest, with minimal performance degradation compared to

models trained for a specific SNR.

Extending our framework to a general relay channel, in which the destination

does successive decoding of the compressed relay index and the source information,

would be possible. Additional design constraints arising from incorporating

a learned CF in full-duplex and half-duplex relay channels, as well as more

complex and realistic channel models would be interesting future research directions.

Another promising area for future exploration is extending the proposed neural CF

frameworks to handle multi-hop networks and MIMO relay channels.



105

Chapter 5

Conclusion and Future Work

In this thesis, we proposed two instances of task-aware design of communication

systems for general-purpose networks. In Chapter 3, we showcased our precoding-

oriented CSI feedback strategy for multi-cell multi-user systems, which can help in

unlocking the potential of massive MIMO systems. In Chapter 4, we provided the

first proof-of-concept for interpretable CF relaying schemes. For specific conclusions

about these two problems, we refer the reader to the summary sections at the end

of the respective chapters, namely Section 3.5 and Section 4.5, respectively.

In both scenarios explored in this thesis, we demonstrated that learned neural

compression methods, combined with a carefully formulated loss function, enabled

the end-to-end optimization of the aforementioned communication problems. One

of our main contributions consists of designing loss functions that directly align with

the key performance metrics of the real-world communication system. In particular,

the tunable nature of the proposed loss functions enables the exploration of various

tradeo↵s between communication overhead and end-to-end performance, without

requiring any explicit changes to the underlying neural architecture. Furthermore,
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the flexibility of our approach is emphasized by the fact that while the specific

neural architecture is chosen based on the nature of the data being processed, the

optimization objective and training strategy are adaptable to a wide range of neural

network choices. This flexibility allows the work presented in this thesis to be easily

extended to other communication scenarios involving di↵erent channel models.

Some future research directions for the multi-cell precoding-oriented CSI feedback

approach are as follows. One possibility is to analyze the performance of our

approach performance across a broader range of channel models, including real-world

data, to validate its e↵ectiveness in practical scenarios. Additionally, extending

the framework to a MIMO-OFDM setting could prove valuable, as OFDM is a

widely used modulation scheme in modern wireless systems. Finally, conducting

comprehensive system-level simulations would provide a deeper understanding of

the approach’s performance in complex real-world network environments.

Regarding the detection-oriented neural relays, several future research directions

are envisioned here. One direction is to extend the current framework to the more

general relay channel, including more realistic channel models that incorporate

factors like fading and interference. Additionally, extending our approach to half-

and full-duplex channels would be valuable, as it would address its applicability in

various real-world scenarios. Another potential direction is to explore the application

of detection-oriented neural relays in MIMO relay channels, which would be of great

interest to next-generation wireless systems. Finally, investigating the scalability of

these learned relays in multi-hop and denser networks could help in the network

design and optimization.



107

Bibliography

[1] Y. Shkel, M. Raginsky, and S. Verdú, “Universal lossy compression under
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[3] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image

compression,” in International Conference on Learning Representations, 2017.

[4] F. Sohrabi, K. M. Attiah, and W. Yu, “Deep learning for distributed channel

feedback and multiuser precoding in FDD massive MIMO,” IEEE Transactions

on Wireless Communications, vol. 20, no. 7, pp. 4044–4057, 2021.

[5] O. Simeone, E. Erkip, and S. Shamai, “On codebook information for

interference relay channels with out-of-band relaying,” IEEE Transactions on

Information Theory, vol. 57, no. 5, pp. 2880–2888, 2011.

[6] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.



108

[7] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication.

Urbana, IL: University of Illinois Press, 1949.

[8] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical

layer,” IEEE Transactions on Cognitive Communications and Networking,

vol. 3, no. 4, pp. 563–575, 2017.

[9] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for

channel estimation and signal detection in ofdm systems,” IEEE Wireless

Communications Letters, vol. 7, no. 1, pp. 114–117, 2018.

[10] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Transactions

on Signal Processing, vol. 67, no. 10, pp. 2554–2564, 2019.

[11] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks:

A comprehensive survey,” IEEE Communications Surveys Tutorials, vol. 20,

no. 4, pp. 2595–2621, 2018.

[12] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural

networks-based machine learning for wireless networks: A tutorial,” IEEE

Communications Surveys Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.

[13] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic

communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp.

2663–2675, 2021.

[14] Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications:

Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.



109

[15] G. Shi, Y. Xiao, Y. Li, and X. Xie, “From semantic communication to

semantic-aware networking: Model, architecture, and open problems,” IEEE

Communications Magazine, vol. 59, no. 8, pp. 44–50, 2021.

[16] C. Chaccour, W. Saad, M. Debbah, Z. Han, and H. V. Poor, “Less data,

more knowledge: Building next generation semantic communication networks,”

arXiv preprint arXiv:2211.14343, 2022.

[17] X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview,

open issues, and future research directions,” IEEE Wireless Communications,

vol. 29, no. 1, pp. 210–219, 2022.

[18] W. Yang, H. Du, Z. Q. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato, X. Chi,

X. Shen, and C. Miao, “Semantic communications for future internet:

Fundamentals, applications, and challenges,” IEEE Communications Surveys

& Tutorials, vol. 25, no. 1, pp. 213–250, 2023.

[19] A. Gersho and R. M. Gray, Vector quantization and signal compression. Kluwer

Academic Publishers, 1991.

[20] F. Carpi, S. Garg, and E. Erkip, “Single-shot compression for hypothesis

testing,” in 2021 IEEE 22nd International Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), 2021, pp. 176–180.

[21] J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,”

Mathematics of Control, Signals and Systems, vol. 1, no. 2, pp. 167–182, Jun

1988. [Online]. Available: https://doi.org/10.1007/BF02551407

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series

https://doi.org/10.1007/BF02551407


110

in Telecommunications and Signal Processing). USA: Wiley-Interscience,

2006.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the

Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990.

[24] K. Wei, R. Iyer, S. Wang, W. Bai, and J. Bilmes, “Mixed robust/average

submodular partitioning: Fast algorithms, guarantees, and applications,”

in Proceedings of the 28th International Conference on Neural Information

Processing Systems - Volume 2, ser. NIPS’15. Cambridge, MA, USA: MIT

Press, December 2015, p. 2233–2241.

[25] A. No, “Universality of logarithmic loss in fixed-length lossy compression,”

Entropy, vol. 21, no. 6, June 2019.

[26] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive MIMO CSI

feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 748–751,

2018.

[27] G. Wallace, “The jpeg still picture compression standard,” IEEE Transactions

on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.
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