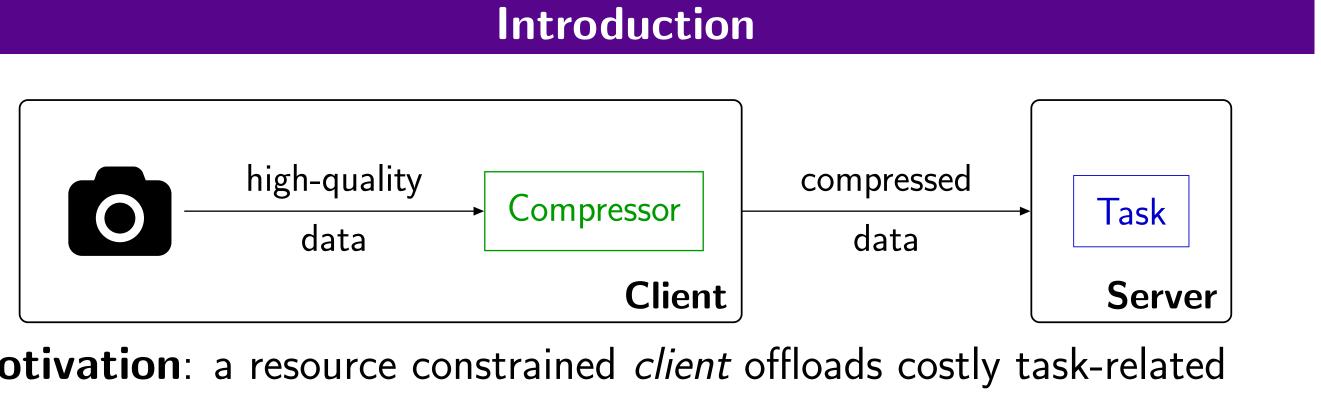


Introduction



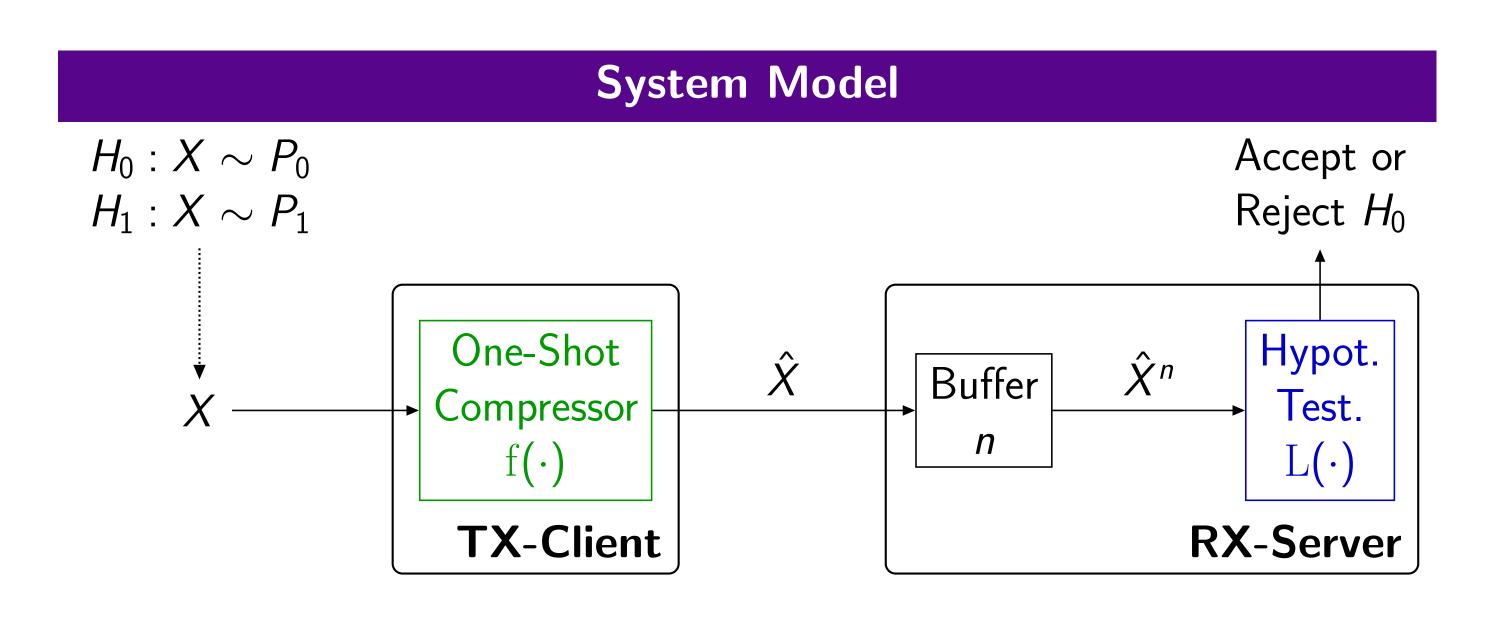
Motivation: a resource constrained *client* offloads costly task-related computations to a remote *server* (edge/cloud computing). **Open need**: design task-aware source coding schemes which provides *effective* representations of the source data.

Assumptions:

- task: binary hypothesis testing;
- client: constrained device which cannot perform task locally, does not have memory and can only do simple scalar compression;
- server: hypothesis testing on a block of compressed samples.

Our work: single-shot fixed-length compression for hypothesis testing.

- problem formulation;
- analyze the error performance;
- propose a task-oriented compression algorithm for hypothesis testing.



Source	Compressor	Hypoth
$x \in \mathcal{X} = \{1, \ldots, \mathcal{X} \}$	$f: \mathcal{X} \to \mathcal{M} = \{1, \dots, M\}$	$L(\hat{X}^n)$
$X\sim P_{ heta}(x)$, $ heta\in\{0,1\}$	$\hat{X} = \mathrm{f}(X)$, $\hat{X} \sim \hat{P}_{ heta}(\hat{X})$	

Fixed rate compression $R = \log M$. We consider $M < |\mathcal{X}|$.

Task: binary hypothesis testing.

- \blacktriangleright if type-I error $< \epsilon$, then type-II error β_n^{ϵ} (accept H_0 when H_1 is true) decays exponentially in *n* as $\gamma = -\lim_{n \to \infty} \frac{1}{n} \log \beta_n^{\epsilon}$;
- **•** our performance metric: type-II error exponent γ ;
- ► Chernoff-Stein [1]: optimal type-II error exponent is $\gamma^* = D(P_0||P_1)$ when there is no compression;
- \blacktriangleright with compression: error exponent depends on (f, R): $\gamma_{\rm f}$
- compression penalty: $\Delta_{\rm f}(R) = D(P_0||P_1) \gamma_{\rm f}(R)$.

Single-Shot Compression for Hypothesis Testing

Fabrizio Carpi, Siddharth Garg, Elza Erkip

hesis Testing

$$\hat{ heta} = 0 \\ \hat{ heta} = 1 \\ \hat{ heta} = 1 \end{bmatrix} \mathsf{log} \; \mathcal{T}$$

Hypothesis Testing under Single-shot Compression

Hypothesis test on $\hat{X} \sim \hat{P}_{\theta}$:

- log-likelihood ratio test on \hat{X}^n is optimal;
- optimal error exponent is $\gamma_{\rm f}^{\star}(R) = D(\hat{P}_0)$
- \implies Compression penalty: $\Delta_{\rm f}(R) = D(P_{\rm f})$

Proposition 1. Expression for $\Delta_f \ge 0$:

$$\Delta_{\mathrm{f}} = \sum_{\hat{x}=1}^{M} \hat{P}_{0}(\hat{x}) D \left(P_{0}(x|\hat{x}) \Big| \Big| P_{1}(x|\hat{x})
ight)$$

 $P_{\theta}(X|\hat{X}) = \frac{P_{\theta}(X)}{\hat{P}_{\theta}(\hat{X})} \mathbb{1}\{\hat{X} = f(X)\}$ is the posterior of X given $\hat{X} = f(X)$. ► Note that a good task-aware compression strategy combines X that

have similar posteriors $P_{\theta}(X|\hat{X})$.

Optimal compressor:

- ► $f^{\star} = \arg \max_{f} D(\hat{P}_{0} || \hat{P}_{1}) = \arg \min_{f} \Delta_{f} \text{ s.t. } |f| \leq M;$
- \blacktriangleright optimization over each possible f, which induces a partition of M sets over \mathcal{X} (NP-hard).

Proposed Compressor Scheme

Optimal one-step compression from $|\mathcal{X}|$ to $|\mathcal{X}| - 1$: ▶ f combines $\{a, b\} \subset \mathcal{X}$ and the others $x \in \mathcal{X} \setminus \{a, b\}$ are one-to-one; ▶ i.e., $f(a) = f(b) = m \in \mathcal{M}$, $f(i) = i \in \mathcal{M} \setminus \{m\}$;

Then,

$$\mathbf{f}^{\star} = \operatorname*{arg\,min}_{\{a,b\}\subset\mathcal{X}:\mathbf{f}(a)=\mathbf{f}(b)=m} \left\{ \hat{P}_0(m) D\left(P_0(x|m) \middle| \middle| P_1(x|m) \right) \right\}.$$
(1)

Our "KL-greedy" compressor:

- iteratively reduce the alphabet size by 1 at each step, until the compressed alphabet has size M;
- ▶ at each step, combine $\{a, b\}$ which minimize (1);
- note that this compressor can be determined in polynomial time.

Results

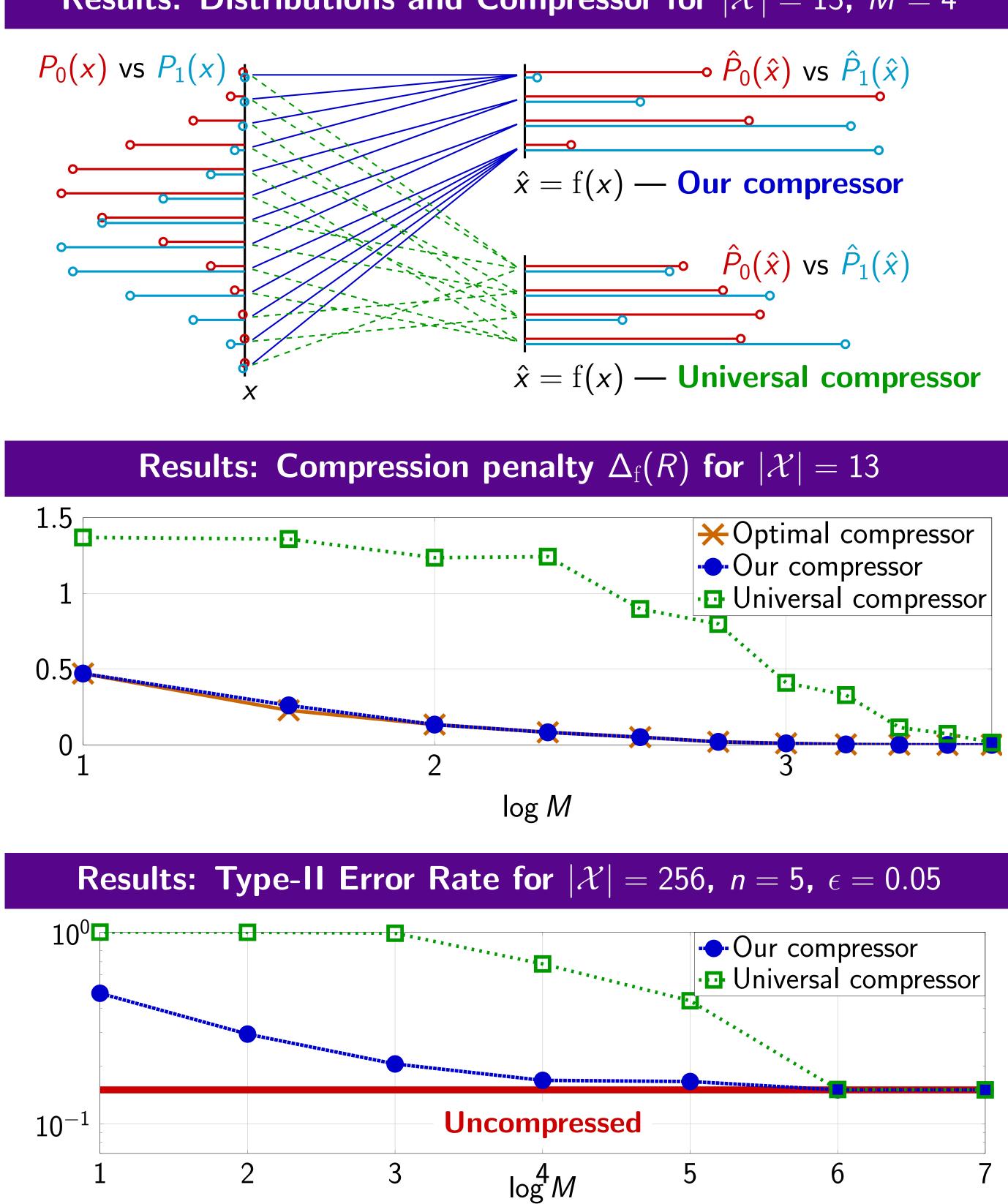
 P_{θ} are shifted binomial distributions with different parameters. Compare compression penalty $\Delta_{\rm f}$ and empirical type-II error rate for:

- ▶ optimal compressor f^* when feasible to compute, i.e, small $|\mathcal{X}|$;
- our KL-greedy compressor;
- universal compressor from [2], which is designed for reconstruction under log-loss distortion.

For the empirical type-II error rate, consider a threshold T such that type-I error rate $< \epsilon = 0.05$ for a given compressor at rate M.

$$|\hat{P}_1).$$

 $P_0||P_1) - D(\hat{P}_0||\hat{P}_1)$



- ► Formulation for the optimal compressor for hypothesis testing. Proposed the empirical "KL-greedy" compressor: it can be computed in polynomial time and preserves the *useful* information.
- Task-aware compression achieves error rate comparable to the uncompressed case for low rates.

and Signal Processing). USA: Wiley-Interscience, 2006.

- [2] Y. Shkel, M. Raginsky, and S. Verdú, "Universal lossy compression under logarithmic loss," in 2017 IEEE International Symposium on Information Theory (ISIT), Jun. 2017, pp. 1157–1161.
- [3] F. Carpi, S. Garg, and E. Erkip, "Single-shot compression for hypothesis testing," in 22nd IEEE Int. Workshop on Signal Processing Advances In Wireless Communications (SPAWC), Sep. 2021.

Acknowledgements

This work was supported in part by NSF–Intel grant #2003182 and NSF grant #1925079.

NYU WIRELESS

Conclusions

References

[1] T. M. Cover and J. A. Thomas, *Elements of Information Theory (Wiley Series in Telecommunications*