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Motivation: a resource constrained client offloads costly task-related
computations to a remote server (edge/cloud computing).
Open need: design task-aware source coding schemes which provides
effective representations of the source data.
Assumptions:
I task: binary hypothesis testing;
I client: constrained device which cannot perform task locally, does not

have memory and can only do simple scalar compression;
I server: hypothesis testing on a block of compressed samples.

Our work: single-shot fixed-length compression for hypothesis testing.
I problem formulation;
I analyze the error performance;
I propose a task-oriented compression algorithm for hypothesis testing.
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Source Compressor Hypothesis Testing

x ∈ X = {1, . . . , |X |} f : X →M = {1, . . . ,M}
L(X̂ n)

θ̂=0
≷
θ̂=1

logT
X ∼ Pθ(x), θ ∈ {0, 1} X̂ = f(X ), X̂ ∼ P̂θ(X̂ )

Fixed rate compression R = logM . We consider M < |X |.

Task: binary hypothesis testing.
I if type-I error < ε, then type-II error βεn (accept H0 when H1 is true)

decays exponentially in n as γ = − limn→∞
1
n log βεn;

I our performance metric: type-II error exponent γ;
I Chernoff-Stein [1]: optimal type-II error exponent is γ? = D(P0||P1)

when there is no compression;
I with compression: error exponent depends on (f,R): γf(R);
I compression penalty: ∆f(R) = D(P0||P1)− γf(R).

Hypothesis Testing under Single-shot Compression

Hypothesis test on X̂ ∼ P̂θ:
I log-likelihood ratio test on X̂ n is optimal;
I optimal error exponent is γ?f (R) = D(P̂0||P̂1).

=⇒ Compression penalty: ∆f(R) = D(P0||P1)− D(P̂0||P̂1)

Proposition 1. Expression for ∆f ≥ 0:

∆f =
M∑
x̂=1

P̂0(x̂)D
(
P0(x |x̂)

∣∣∣∣∣∣P1(x |x̂)
)

Pθ(X |X̂ ) = Pθ(X )

P̂θ(X̂ )
1{X̂ = f(X )} is the posterior of X given X̂ = f(X ).

I Note that a good task-aware compression strategy combines X that
have similar posteriors Pθ(X |X̂ ).

Optimal compressor:
I f? = arg maxf D(P̂0||P̂1) = arg minf ∆f s.t. |f| ≤ M ;
I optimization over each possible f, which induces a partition of M sets

over X (NP-hard).

Proposed Compressor Scheme

Optimal one-step compression from |X | to |X | − 1:
I f combines {a, b} ⊂ X and the others x ∈ X \ {a, b} are one-to-one;
I i.e., f(a) = f(b) = m ∈M, f(i) = i ∈M \ {m};

Then,

f? = arg min
{a,b}⊂X :f(a)=f(b)=m

{
P̂0(m)D

(
P0(x |m)

∣∣∣∣∣∣P1(x |m)
)}

. (1)

Our “KL-greedy” compressor:
I iteratively reduce the alphabet size by 1 at each step, until the

compressed alphabet has size M ;
I at each step, combine {a, b} which minimize (1);
I note that this compressor can be determined in polynomial time.

Results

Pθ are shifted binomial distributions with different parameters.
Compare compression penalty ∆f and empirical type-II error rate for:
I optimal compressor f? — when feasible to compute, i.e, small |X |;
I our KL-greedy compressor;
I universal compressor from [2], which is designed for reconstruction

under log-loss distortion.

For the empirical type-II error rate, consider a threshold T such that
type-I error rate < ε = 0.05 for a given compressor at rate M .

Results: Distributions and Compressor for |X | = 13, M = 4
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Results: Compression penalty ∆f(R) for |X | = 13
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Results: Type-II Error Rate for |X | = 256, n = 5, ε = 0.05

1 2 3 4 5 6 7

10−1

100

Uncompressed

logM

Our compressor
Universal compressor

Conclusions

I Formulation for the optimal compressor for hypothesis testing.
I Proposed the empirical “KL-greedy” compressor: it can be computed

in polynomial time and preserves the useful information.
I Task-aware compression achieves error rate comparable to the

uncompressed case for low rates.
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