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Linear Block Codes

Background
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e C is a linear block code (N, K) described by a M x N parity check matrix H

o Syndrome: s = Hz, where z € F is the received word

@ Any codeword ¢ € C satisfies Hc =0
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Background Channel Coding

Decoding Algorithms with Sequential Decision Processes

= Bit-Flipping (BF) decoding® < case study of this paper
e Basic idea: flip a bit that maximizes number of correct parity checks (on BSC)
It can also be extended to AWGN channel (Weighed BF, WBF)

Iw. Ryan and S. Lin, Channel Codes Classical and Modern. Cambridge University Press, 2009.

2G. Elidan, 1. McGraw, and D. Koller, “Residual belief propagation: Informed scheduling for asynchronous message passing,” in Proc. Conf.
Uncertainty in Al (UAI), Boston, MA, 2006.

3¢C. Hager and H. D. Pfister, “Approaching miscorrection-free performance of product codes with anchor decoding,” IEEE Trans. Commun.,
vol. 66, no. 7, pp. 2797-2808, July 2018.
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Decoding Algorithms with Sequential Decision Processes

= Bit-Flipping (BF) decoding® < case study of this paper
e Basic idea: flip a bit that maximizes number of correct parity checks (on BSC)
It can also be extended to AWGN channel (Weighed BF, WBF)

o Residual Belief Propagation?

@ Anchor Decoding of Product/Staircase Codes®
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Background Reinforcement Learning

Markov Decision Process (MDP)

action

Bl

Environment

Agent state st €S
5t ar € A
P(St+1| St, at)

R(st, at, st+1) = 1t

reward / ai.berkeley.edu
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m:S— A
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Background Reinforcement Learning

Q-Learning

Observable states and rewards = Solve with RL = Q-Learning*

4C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King's College, Cambridge, UK, 1989.
5C. J. C. H. Watkins, P. Dylan, “Technical Note: Q-Learning,” Machine Learning, vol. 8, no. 3, pp. 279-292, May 1992.
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Q-Learning

Observable states and rewards = Solve with RL = Q-Learning*
Policy

RQ:SxA—=NR w*(s) = argmax Q(s, a)
acA
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Background Reinforcement Learning

Q-Learning

Observable states and rewards = Solve with RL = Q-Learning*

Policy
RQ:SxA—=NR w*(s) = argmax Q(s, a)
acA
Update (for learning rate & and discount factor )
Q(st,ar) < (L —a)Q(st,ar) +a |re 4+ max Q(st+1,a)

Convergence®: if |r;| < co and 0 < &,y < 1, then Q(s, a) ——— Q*(s, a)

4C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King's College, Cambridge, UK, 1989.
5C. J. C. H. Watkins, P. Dylan, “Technical Note: Q-Learning,” Machine Learning, vol. 8, no. 3, pp. 279-292, May 1992.
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RL for Bit-Flipping

© Case Study: Reinforcement Learning for Bit-Flipping Decoding
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RL for Bit-Flipping Problem Formulation

Bit-Flipping Interpreted as an MDP

action a;

flip the a;-th bit

Environment
StES:{StIS:S:HZ VzE]FQ’}

se A={1,... N}
syndrome P(sty1] st ar) € {0,1}
R(St.at,5t+1) =r

Agent
Decoder

reward r;

large r; if codeword is found
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RL for Bit-Flipping Problem Formulation

Reward strategy

@ Maximum likelihood decoding (A, is the log-likelihood ratio for the n-th bit)

N

N
argmax | | Py,|c,(¥nlcn) = -+ = argmax Y —en|An]
ceC  p=1 e:He=s ,—1

o Considering the RL BF multi-stage process

T

arg max Y —|Aa]

T,a1,...,8r 1 Y1 hay =5 t=1

= \We propose to interpret —|A,,| as a reward

—c|As|+1 ifsi1 =0

R(s¢, as, s =
(51, 20, st4) —c|A,| otherwise
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RL for Bit-Flipping  Problem Formulation

Q function

@ For short codes: Q-table containing Q(s, a) may be feasible (size |S| - |.A|)

= For large S x A: use a neural network (NN) to approximate Q(s, a) =~ Q(s, a;0)
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RL for Bit-Flipping Problem Formulation

Exploration strategies

@ Standard: e-greedy exploration

unif. random over A w.p. €

arg maxy Q(s, @) w.p. 1—¢

= We propose: (¢, £g)-goal exploration — where supp(e) = {i € [N]|e; = 1}

unif. random over A w.p. €
a = q unif. random over supp(e) w.p. &g
arg maxy Q(s, a') wp.1—e—¢g
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RL for Bit-Flipping Code Automorphism

Decoding with Reliability-based Sorting

o Permutation automorphism group: PAut(C) 2 {mr € Sy |x™ € C,Vx € C}
e Sorting strategy (BCH)G: the first K bits are the most reliable
= For RM, we move least reliable bits to positions {0,1,2,4,...,2m1} £ B

o Approximate Sort and Discard (s+d): sort the received bits + discard LLRs
1
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A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep learning for decoding of linear codes — E,/No (dB)

a syndrome-based approach,” in Proc. IEEE Int. Symp. Information Theory (ISIT), Vail, CO, 2018.
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Results Error Rate Performance

RM(32, 16)
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Results Convergence Improvements

Exploration Strategies and Convergence
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Conclusion

Conclusion

Decoding of Decision-making problem \/

error-correcting codes

Reinforcement learning

RL framework for BF decoding

= BF is mapped to an MDP

o The objective is ML decoding
o Exploration can be biased towards “good” actions to speed-up convergence

® Table Q-learning and NN-based provide performance—complexity trade-offs

Simulation code available Github: fabriziocarpi/RLdecoding
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https://github.com/fabriziocarpi/RLdecoding
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