Precoding-oriented Massive MIMO CSI Feedback Design

Fabrizio Carpi¹, Sivarama Venkatesan², Jinfeng Du², Harish Viswanathan², Siddharth Garg¹, Elza Erkip¹

¹New York University, ²Nokia Bell Labs

IEEE International Conference on Communications (ICC) 28 May – 01 June 2023 — Rome, Italy

Outline

- 2 System Model
- 3 Our Precoding-oriented CSI Feedback

Introduction

2 System Model

3 Our Precoding-oriented CSI Feedback

4 Results

5 Conclusion

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

• Downlink frequency division duplexing (FDD) MIMO: the channel state information (CSI) has to be fed back on the uplink

J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, "Overview of deep learning-based CSI feedback in massive MIMO systems," IEEE TCOM, 2022.

- Downlink frequency division duplexing (FDD) MIMO: the channel state information (CSI) has to be fed back on the uplink
- Classical CSI compression techniques are not practical for large systems or rely on assumptions on the channel model \implies deep learning techniques achieve good performance with fewer assumptions (data-driven)

J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, "Overview of deep learning-based CSI feedback in massive MIMO systems," IEEE TCOM, 2022.

- Downlink frequency division duplexing (FDD) MIMO: the channel state information (CSI) has to be fed back on the uplink
- Classical CSI compression techniques are not practical for large systems or rely on assumptions on the channel model \implies deep learning techniques achieve good performance with fewer assumptions (data-driven)
- Most previous works focus on the CSI compression for channel reconstruction But... the ultimate goal is to achieve high spectral efficiency!

J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, "Overview of deep learning-based CSI feedback in massive MIMO systems," IEEE TCOM, 2022.

- Downlink frequency division duplexing (FDD) MIMO: the channel state information (CSI) has to be fed back on the uplink
- Classical CSI compression techniques are not practical for large systems or rely on assumptions on the channel model => deep learning techniques achieve good performance with fewer assumptions (data-driven)
- Most previous works focus on the CSI compression for channel reconstruction But... the ultimate goal is to achieve high spectral efficiency!
- \Longrightarrow We focus on task-oriented CSI compression

J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, "Overview of deep learning-based CSI feedback in massive MIMO systems," IEEE TCOM, 2022.

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

ICC 2023 3 / 15

.... Y

Precoding-oriented CSI feedback

<u>Task</u>: MIMO precoding <u>Goal</u>: max achievable rate with limited feedback overhead

Precoding-oriented CSI feedback

<u>Task</u>: MIMO precoding <u>Goal</u>: max achievable rate with limited feedback overhead

1 Introduction

2 System Model

3 Our Precoding-oriented CSI Feedback

4 Results

5 Conclusion

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

System Model: definitions

- One BS with N_t antennas, K single-antennas users
- Downlink transmitted signal with linear precoding:

$$\mathbf{x} = \sum_{k=1}^{K} \mathbf{v}_k s_k = \mathbf{V} \mathbf{s}$$

• Received signal at *k*-th user:

$$y_k = \mathbf{h}_k^H \mathbf{v}_k s_k + \sum_{j \neq k} \mathbf{h}_k^H \mathbf{v}_j s_j + z_k$$

• Metric: sum of achievable rates:

$$R = \sum_{k=1}^{K} R_k = \sum_{k=1}^{K} \log_2 \left(1 + \frac{|\mathbf{h}_k^H \mathbf{v}_k|^2}{\sum_{j \neq k} |\mathbf{h}_k^H \mathbf{v}_j|^2 + \sigma^2} \right)$$

(1)

System Model: block diagram

We use neural networks to design pilots, feedback scheme \mathcal{F} , BS processing \mathcal{G} **Goal**: max achievable rate with limited feedback overhead

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

Introduction

2 System Model

3 Our Precoding-oriented CSI Feedback

4 Results

5 Conclusion

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Previous work

Ref	Task-oriented?	Feedback overhead optimization?
[1]	Yes, precoding	No, overhead is fixed with the architecture
[2]	No, channel reconstruction	Yes, Lagrangian loss and entropy coding [3, 4]
Ours	Yes, precoding	Yes, Lagrangian loss and entropy coding [3, 4]

- [3, 4]: image compression with neural networks (autoencoder), the loss function includes a tradeoff between feedback overhead (rate) and image reconstruction performance
- F. Sohrabi, K. M. Attiah, and W. Yu, "Deep learning for distributed channel feedback and multiuser precoding in FDD massive MIMO," IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4044–4057, 2021.
- [2] M. B. Mashhadi, Q. Yang, and D. Gündüz, "Distributed deep convolutional compression for massive MIMO CSI feedback," IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2621–2633, 2021.
- [3] J. Ballé, V. Laparra, and E. P. Simoncelli, "End-to-end optimized image compression," in International Conference on Learning Representations, 2017.
- J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, "Variational image compression with a scale hyperprior," in International Conference on Learning Representations, 2018.

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

Neural Networks

Neural networks

Pilots $\mathbf{\tilde{X}} \in \mathbb{C}^{N_t \times L}$

- Fully-connected (FC) layer with linear activation and zero bias
- Power constraint: $\|\mathbf{\tilde{x}}_{\ell}\|_2^2 = P$

User network f_{θ}

- DNN with 4 FC layers
- Extracts semantic features \mathbf{t}_k from the noisy pilots (per user)

BS network g_{ϕ}

- DNN with 5 FC layers
- Determines the K precoders from the K semantic features
- Power constraint: $Tr(\mathbf{VV}^H) = P$

Feedback Overhead Optimization

Feedback Overhead Optimization

Feedback quantization: DNN output to bitstream — from [Ballé et al., 2017, 2018]

During test time:

- Quantizer q: scalar quantization to closest integer \Longrightarrow quantized features $\overline{\mathbf{t}}_k$
- Entropy coder c_{ψ} : converts $\bar{\mathbf{t}}_k$ into bit streams \mathbf{b}_k
- Entropy decoder \mathbf{c}_{ψ}^{-1} : (lossless) reconstruction $\mathbf{c}_{\psi}^{-1}(\mathbf{b}_k) = \bar{\mathbf{t}}_k$
- ψ : parameters learned during training $\Longrightarrow \sim$ probability distribution of $ar{\mathbf{t}}_k$

During training:

- Simulate quantization noise: add $u_k^1, \ldots, u_k^{N_b} \sim \mathcal{U}[-0.5, +0.5]$
- Pseudo-quantized features: $\mathbf{\tilde{t}}_k = \mathbf{t}_k + \mathbf{u}_k$
- Note: the probability distribution of $\mathbf{\tilde{t}}_k$ is a continuous relaxation of the one of $\mathbf{\bar{t}}_k$

Loss Function

Loss Function

Loss function including three possible metrics:

$$\mathcal{L}(\theta, \phi, \psi) = \mathcal{O} - \lambda \mathcal{R} + \gamma \mathcal{D}, \qquad (2)$$

- Feedback overhead \mathcal{O} : entropy (rate) of the pseudo-quantized features $\mathbf{\tilde{t}}_k$
- Performance \mathcal{R} : achievable rates with precoding V

- Distortion \mathcal{D} : reconstruction loss when estimating channels $\hat{\mathbf{H}}$
- λ and γ determine the tradeoff between the three components

🖗 NYU

🌴 NYU

Loss Function

Loss function including three possible metrics:

$$\mathcal{L}(\theta, \phi, \psi) = \mathcal{O} - \lambda \mathcal{R} + \gamma \mathcal{D}, \qquad (2)$$

- Feedback overhead \mathcal{O} : entropy (rate) of the pseudo-quantized features $\mathbf{\tilde{t}}_k$ $\mathcal{O}_k(\theta, \psi) = \mathbb{E}_{\mathbf{h}_k, \mathbf{u}_k, \mathbf{z}_k} \left[-\log p_{\mathbf{\tilde{t}}}(\mathbf{\tilde{t}}_k; \psi) \right]$
- \bullet Performance $\mathcal{R}:$ achievable rates with precoding \boldsymbol{V}

$$\mathcal{R}_k(heta, \psi, \phi) = \mathbb{E}_{\mathbf{h}_k, \mathbf{U}, \mathbf{Z}} \log_2 \left(1 + rac{|\mathbf{h}_k^H \mathbf{v}_k|^2}{\sum_{j \neq k} |\mathbf{h}_k^H \mathbf{v}_j|^2 + \sigma^2}
ight)$$

- Distortion \mathcal{D} : reconstruction loss when estimating channels $\hat{\mathbf{H}}$ $\mathcal{D}(\theta, \psi, \phi) = \mathbb{E}_{\mathbf{H}, \mathbf{U}, \mathbf{Z}} \| \mathbf{H} - \hat{\mathbf{H}} \|_{2}^{2}$
- $\bullet~\lambda$ and γ determine the tradeoff between the three components

1 Introduction

2 System Model

3 Our Precoding-oriented CSI Feedback

5 Conclusion

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

Results

Results: 2 users, 64 TX antennas, 2-path channel, 8 pilots, SNR = 10dB

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

W NYU WIRELESS

Results

Results: 2 users, 64 TX antennas, 2-path channel, 8 pilots, SNR = 10dB

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

W NYU WIRELESS

Results

Results: 2 users, 64 TX antennas, 2-path channel, 8 pilots, SNR = 10dB

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

W NYU WIRELESS

Results

Results: 2 users, 64 TX antennas, 2-path channel, 8 pilots, SNR = 10dB

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

1 Introduction

2 System Model

3 Our Precoding-oriented CSI Feedback

4 Results

F. Carpi, S. Venkatesan, J. Du, H. Viswanathan, S. Garg, E. Erkip

Precoding-oriented Massive MIMO CSI Feedback Design

Conclusion

- Analysis of the tradeoff between feedback overhead, system performance, and channel reconstruction
- Focus on performance as the final metric for our task (MIMO precoding)
- Precoding-oriented works best for the small overhead regime
 - Optimized for overhead-performance
 - Good news for beyond 5G! Precoding-oriented may unlock the potential of *extreme* massive MIMO arrays
 - $\bullet\,$ Moreover: integration with ML/AI is on the table for the next 3GPP releases
- If the feedback overhead budget is large, then all methods are equivalent

Precoding-oriented Massive MIMO CSI Feedback Design

Fabrizio Carpi¹, Sivarama Venkatesan², Jinfeng Du², Harish Viswanathan², Siddharth Garg¹, Elza Erkip¹ fabrizio.carpi@nyu.edu

https://fabriziocarpi.github.io/

References

- F. Sohrabi, K. M. Attiah, and W. Yu, "Deep learning for distributed channel feedback and multiuser precoding in FDD massive MIMO," *IEEE Transactions on Wireless Communications*, vol. 20, no. 7, pp. 4044–4057, 2021.
- [2] M. B. Mashhadi, Q. Yang, and D. Gündüz, "Distributed deep convolutional compression for massive MIMO CSI feedback," *IEEE Transactions on Wireless Communications*, vol. 20, no. 4, pp. 2621–2633, 2021.
- [3] J. Ballé, V. Laparra, and E. P. Simoncelli, "End-to-end optimized image compression," in *International Conference on Learning Representations*, 2017.
- [4] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, "Variational image compression with a scale hyperprior," in *International Conference on Learning Representations*, 2018.

Simulation setup

Channel model: multipath, BS with uniform linear array.

Compare with:

- MRT/ZF with CSIT: full CSI **H** is available at the transmitter (BS), then compute maximal-ratio transmission (maximize per-user received power) or zero-forcing (minimize inter-user interference)
- Precoder-oriented from [1]: similar setup, but with a different feedback overhead optimization. The loss function is the performance and the feedback overhead is determined by the number of feedback taps (fixed).
- Reconstruction-oriented similar to [2] + MRT/ZF: system trained for overhead-distortion loss, followed by MRT/ZF (non precoding-oriented)